結果

問題 No.1301 Strange Graph Shortest Path
ユーザー peroonperoon
提出日時 2020-11-28 00:03:18
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 213 ms / 3,000 ms
コード長 10,950 bytes
コンパイル時間 2,699 ms
コンパイル使用メモリ 201,560 KB
実行使用メモリ 37,660 KB
最終ジャッジ日時 2024-07-26 20:38:33
合計ジャッジ時間 9,410 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 149 ms
36,020 KB
testcase_03 AC 119 ms
32,088 KB
testcase_04 AC 191 ms
34,808 KB
testcase_05 AC 130 ms
35,408 KB
testcase_06 AC 173 ms
32,372 KB
testcase_07 AC 159 ms
34,352 KB
testcase_08 AC 132 ms
32,480 KB
testcase_09 AC 140 ms
30,756 KB
testcase_10 AC 126 ms
32,580 KB
testcase_11 AC 161 ms
33,312 KB
testcase_12 AC 159 ms
33,552 KB
testcase_13 AC 143 ms
35,520 KB
testcase_14 AC 174 ms
31,076 KB
testcase_15 AC 140 ms
31,852 KB
testcase_16 AC 188 ms
34,820 KB
testcase_17 AC 164 ms
36,504 KB
testcase_18 AC 153 ms
33,056 KB
testcase_19 AC 148 ms
32,588 KB
testcase_20 AC 172 ms
32,200 KB
testcase_21 AC 159 ms
35,200 KB
testcase_22 AC 184 ms
32,368 KB
testcase_23 AC 145 ms
35,832 KB
testcase_24 AC 178 ms
32,032 KB
testcase_25 AC 176 ms
34,944 KB
testcase_26 AC 158 ms
33,396 KB
testcase_27 AC 147 ms
33,372 KB
testcase_28 AC 130 ms
35,104 KB
testcase_29 AC 213 ms
33,912 KB
testcase_30 AC 156 ms
34,476 KB
testcase_31 AC 170 ms
34,460 KB
testcase_32 AC 2 ms
6,940 KB
testcase_33 AC 99 ms
29,612 KB
testcase_34 AC 160 ms
37,660 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifdef LOCAL
    #define _GLIBCXX_DEBUG
    #define __clock__
#else
    #pragma GCC optimize("Ofast")
#endif
#include<bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using VI = vector<ll>;
using VV = vector<VI>;
using VS = vector<string>;
using PII = pair<ll, ll>;

// tourist set
template <typename A, typename B>
string to_string(pair<A, B> p);

template <typename A, typename B, typename C>
string to_string(tuple<A, B, C> p);

template <typename A, typename B, typename C, typename D>
string to_string(tuple<A, B, C, D> p);

string to_string(const string& s) {
  return '"' + s + '"';
}

string to_string(const char* s) {
  return to_string((string) s);
}

string to_string(bool b) {
  return (b ? "true" : "false");
}

string to_string(vector<bool> v) {
  bool first = true;
  string res = "{";
  for (int i = 0; i < static_cast<int>(v.size()); i++) {
    if (!first) {
      res += ", ";
    }
    first = false;
    res += to_string(v[i]);
  }
  res += "}";
  return res;
}

template <size_t N>
string to_string(bitset<N> v) {
  string res = "";
  for (size_t i = 0; i < N; i++) {
    res += static_cast<char>('0' + v[i]);
  }
  return res;
}

template <typename A>
string to_string(A v) {
  bool first = true;
  string res = "{";
  for (const auto &x : v) {
    if (!first) {
      res += ", ";
    }
    first = false;
    res += to_string(x);
  }
  res += "}";
  return res;
}

template <typename A, typename B>
string to_string(pair<A, B> p) {
  return "(" + to_string(p.first) + ", " + to_string(p.second) + ")";
}

template <typename A, typename B, typename C>
string to_string(tuple<A, B, C> p) {
  return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " + to_string(get<2>(p)) + ")";
}

template <typename A, typename B, typename C, typename D>
string to_string(tuple<A, B, C, D> p) {
  return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " + to_string(get<2>(p)) + ", " + to_string(get<3>(p)) + ")";
}

void debug_out() { cerr << '\n'; }

template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
  cerr << " " << to_string(H);
  debug_out(T...);
}

#ifdef LOCAL
#define debug(...) cerr << "[" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__)
#else
#define debug(...) 42
#endif
// tourist set end

template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }

#define FOR(i,a,b) for(ll i=(a);i<(b);++i)
#define rep(i,b) FOR(i, 0, b)
#define ALL(v) (v).begin(), (v).end()
#define p(s) cout<<(s)<<'\n'
#define p2(s, t) cout << (s) << " " << (t) << '\n'
#define br() p("")
#define pn(s) cout << (#s) << " " << (s) << '\n'
#define SZ(x) ((int)(x).size())
#define SORT(A) sort(ALL(A))
#define RSORT(A) sort(ALL(A), greater<ll>())
#define MP make_pair
#define p_yes() p("Yes")
#define p_no() p("No")
#define possible() p("Possible")
#define impossible() p("Impossible")

ll SUM(VI& V){
  return accumulate(ALL(V), 0LL);
}

ll MIN(VI& V){return *min_element(ALL(V));}
ll MAX(VI& V){return *max_element(ALL(V));}

void print_vector(VI& V){
  ll n = V.size();
  rep(i, n){
    if(i) cout << ' ';
    cout << V[i];
  }
  cout << endl;
}

ll gcd(ll a,ll b){
    if(b == 0) return a;
    return gcd(b,a%b);
}

ll lcm(ll a,ll b){
    ll g = gcd(a,b);
    return a / g * b;
}

// long double
using ld = long double;
#define EPS (1e-14)
#define equals(a,b) (fabs((a)-(b)) < EPS)

// 小さい順に取り出すpriority queue
using inverse_priority_queue = priority_queue<ll, vector<ll>, greater<ll> >;

int popcount(ll t){
    return __builtin_popcountll(t);
}

void no(){p_no(); exit(0);}
void yes(){p_yes(); exit(0);}

const ll mod = 1e9 + 7;
// const ll mod = 998244353;
const ll inf = 1e18;
const double PI = acos(-1);

// [a/b] (繰り上げ)
ll ceil_div(ll a, ll b){
  return (a+b-1)/b;
}

ll string_to_ll(string s){
  return atoll(s.c_str());
}

// snuke's mint
// auto mod int
// https://youtu.be/L8grWxBlIZ4?t=9858
// https://youtu.be/ERZuLAxZffQ?t=4807 : optimize
// https://youtu.be/8uowVvQ_-Mo?t=1329 : division
// const int mod = 1000000007;
struct mint {
  ll x; // typedef long long ll;
  mint(ll x=0):x((x%mod+mod)%mod){}
  mint operator-() const { return mint(-x);}
  mint& operator+=(const mint a) {
    if ((x += a.x) >= mod) x -= mod;
    return *this;
  }
  mint& operator-=(const mint a) {
    if ((x += mod-a.x) >= mod) x -= mod;
    return *this;
  }
  mint& operator*=(const mint a) {
    (x *= a.x) %= mod;
    return *this;
  }
  mint operator+(const mint a) const {
    mint res(*this);
    return res+=a;
  }
  mint operator-(const mint a) const {
    mint res(*this);
    return res-=a;
  }
  mint operator*(const mint a) const {
    mint res(*this);
    return res*=a;
  }
  mint pow(ll t) const {
    if (!t) return 1;
    mint a = pow(t>>1);
    a *= a;
    if (t&1) a *= *this;
    return a;
  }

  // for prime mod
  mint inv() const {
    return pow(mod-2);
  }
  mint& operator/=(const mint a) {
    return (*this) *= a.inv();
  }
  mint operator/(const mint a) const {
    mint res(*this);
    return res/=a;
  }
};


#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>

namespace atcoder {

template <class Cap, class Cost> struct mcf_graph {
  public:
    mcf_graph() {}
    mcf_graph(int n) : _n(n), g(n) {}

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        int from_id = int(g[from].size());
        int to_id = int(g[to].size());
        if (from == to) to_id++;
        g[from].push_back(_edge{to, to_id, cap, cost});
        g[to].push_back(_edge{from, from_id, 0, -cost});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{
            pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
        };
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result(m);
        for (int i = 0; i < m; i++) {
            result[i] = get_edge(i);
        }
        return result;
    }

    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
        std::vector<Cost> dual(_n, 0), dist(_n);
        std::vector<int> pv(_n), pe(_n);
        std::vector<bool> vis(_n);
        auto dual_ref = [&]() {
            std::fill(dist.begin(), dist.end(),
                      std::numeric_limits<Cost>::max());
            std::fill(pv.begin(), pv.end(), -1);
            std::fill(pe.begin(), pe.end(), -1);
            std::fill(vis.begin(), vis.end(), false);
            struct Q {
                Cost key;
                int to;
                bool operator<(Q r) const { return key > r.key; }
            };
            std::priority_queue<Q> que;
            dist[s] = 0;
            que.push(Q{0, s});
            while (!que.empty()) {
                int v = que.top().to;
                que.pop();
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                for (int i = 0; i < int(g[v].size()); i++) {
                    auto e = g[v][i];
                    if (vis[e.to] || !e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual[e.to] + dual[v];
                    if (dist[e.to] - dist[v] > cost) {
                        dist[e.to] = dist[v] + cost;
                        pv[e.to] = v;
                        pe[e.to] = i;
                        que.push(Q{dist[e.to], e.to});
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
                //         = - shortest(s, t) + dual[t] + shortest(s, v)
                //         = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
                dual[v] -= dist[t] - dist[v];
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost_per_flow = -1;
        std::vector<std::pair<Cap, Cost>> result;
        result.push_back({flow, cost});
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = pv[v]) {
                c = std::min(c, g[pv[v]][pe[v]].cap);
            }
            for (int v = t; v != s; v = pv[v]) {
                auto& e = g[pv[v]][pe[v]];
                e.cap -= c;
                g[v][e.rev].cap += c;
            }
            Cost d = -dual[s];
            flow += c;
            cost += c * d;
            if (prev_cost_per_flow == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost_per_flow = d;
        }
        return result;
    }

  private:
    int _n;

    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder

using namespace atcoder; // 忘れがち

int main(){
    cin.tie(0);
    ios::sync_with_stdio(false);

    // input
    ll N,M;
    cin>>N>>M;

    mcf_graph<ll,ll> graph(N);
    
    rep(i,M){
      ll a,b,c,d;
      cin>>a>>b>>c>>d;
      a--;b--;
      graph.add_edge(a,b,1,c);
      graph.add_edge(b,a,1,c);
      graph.add_edge(a,b,1,d);
      graph.add_edge(b,a,1,d);
    }
    ll flow_limit=2;
    auto pa = graph.flow(0,N-1,flow_limit);
    ll cost = pa.second;
    p(cost);
    
    return 0;
}
0