結果

問題 No.1301 Strange Graph Shortest Path
ユーザー milanis48663220milanis48663220
提出日時 2020-11-28 00:10:10
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 6,067 bytes
コンパイル時間 797 ms
コンパイル使用メモリ 97,772 KB
最終ジャッジ日時 2024-11-14 23:55:17
合計ジャッジ時間 3,423 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
main.cpp: In member function 'std::pair<_T1, _T2> mcf_graph<Cap, Cost>::flow(int, int)':
main.cpp:60:32: error: 'numeric_limits' is not a member of 'std'
   60 |         return flow(s, t, std::numeric_limits<Cap>::max());
      |                                ^~~~~~~~~~~~~~
main.cpp:60:50: error: expected primary-expression before '>' token
   60 |         return flow(s, t, std::numeric_limits<Cap>::max());
      |                                                  ^
main.cpp:60:56: error: no matching function for call to 'max()'
   60 |         return flow(s, t, std::numeric_limits<Cap>::max());
      |                                                   ~~~~~^~
In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/string:50,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/locale_classes.h:40,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/ios_base.h:41,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/ios:42,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/ostream:38,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/iostream:39,
                 from main.cpp:1:
/home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_algobase.h:254:5: note: candidate: 'template<class _Tp> constexpr const _Tp& std::max(const _Tp&, const _Tp&)'
  254 |     max(const _Tp& __a, const _Tp& __b)
      |     ^~~
/home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_algobase.h:254:5: note:   template argument deduction/substitution failed:
main.cpp:60:56: note:   candidate expects 2 arguments, 0 provided
   60 |         return flow(s, t, std::numeric_limits<Cap>::max());
      |                                                   ~~~~~^~
/home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_algobase.h:300:5: note: candida

ソースコード

diff #

#include <iostream>
#include <algorithm>
#include <iomanip>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <cassert>

#define debug_value(x) cerr << "line" << __LINE__ << ":<" << __func__ << ">:" << #x << "=" << x << endl;
#define debug(x) cerr << "line" << __LINE__ << ":<" << __func__ << ">:" << x << endl;

template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }

using namespace std;
typedef long long ll;


template <class Cap, class Cost> struct mcf_graph {
  public:
    mcf_graph() {}
    mcf_graph(int n) : _n(n), g(n) {}

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        g[from].push_back(_edge{to, int(g[to].size()), cap, cost});
        g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{
            pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
        };
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result(m);
        for (int i = 0; i < m; i++) {
            result[i] = get_edge(i);
        }
        return result;
    }

    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
        std::vector<Cost> dual(_n, 0), dist(_n);
        std::vector<int> pv(_n), pe(_n);
        std::vector<bool> vis(_n);
        auto dual_ref = [&]() {
            std::fill(dist.begin(), dist.end(),
                      std::numeric_limits<Cost>::max());
            std::fill(pv.begin(), pv.end(), -1);
            std::fill(pe.begin(), pe.end(), -1);
            std::fill(vis.begin(), vis.end(), false);
            struct Q {
                Cost key;
                int to;
                bool operator<(Q r) const { return key > r.key; }
            };
            std::priority_queue<Q> que;
            dist[s] = 0;
            que.push(Q{0, s});
            while (!que.empty()) {
                int v = que.top().to;
                que.pop();
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                for (int i = 0; i < int(g[v].size()); i++) {
                    auto e = g[v][i];
                    if (vis[e.to] || !e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual[e.to] + dual[v];
                    if (dist[e.to] - dist[v] > cost) {
                        dist[e.to] = dist[v] + cost;
                        pv[e.to] = v;
                        pe[e.to] = i;
                        que.push(Q{dist[e.to], e.to});
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
                //         = - shortest(s, t) + dual[t] + shortest(s, v)
                //         = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
                dual[v] -= dist[t] - dist[v];
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost = -1;
        std::vector<std::pair<Cap, Cost>> result;
        result.push_back({flow, cost});
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = pv[v]) {
                c = std::min(c, g[pv[v]][pe[v]].cap);
            }
            for (int v = t; v != s; v = pv[v]) {
                auto& e = g[pv[v]][pe[v]];
                e.cap -= c;
                g[v][e.rev].cap += c;
            }
            Cost d = -dual[s];
            flow += c;
            cost += c * d;
            if (prev_cost == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost = cost;
        }
        return result;
    }

  private:
    int _n;

    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};

int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout << setprecision(10) << fixed;
    int n, m;
    cin >> n >> m;
    mcf_graph<int, ll> mcf(n);
    for(int i = 0; i < m; i++){
        int u, v, c, d;
        cin >> u >> v >> c >> d;
        u--; v--;
        mcf.add_edge(u, v, 1, c);
        mcf.add_edge(v, u, 1, c);
        mcf.add_edge(u, v, 1, d);
        mcf.add_edge(v, u, 1, d);
    }
    cout << mcf.flow(0, n-1, 2).second << endl;
}
0