結果
| 問題 |
No.1300 Sum of Inversions
|
| コンテスト | |
| ユーザー |
kaikey
|
| 提出日時 | 2020-11-28 00:22:29 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 6,685 bytes |
| コンパイル時間 | 2,496 ms |
| コンパイル使用メモリ | 210,864 KB |
| 最終ジャッジ日時 | 2025-01-16 08:51:01 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 2 WA * 32 |
ソースコード
#include <bits/stdc++.h>
#include <random>
using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef pair<lint, lint> plint; typedef pair<double long, double long> pld;
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) ((lint)(x).size())
#define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
#define endk '\n'
template<class T> auto add = [](T a, T b) -> T { return a + b; };
template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); };
template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); };
template<class T> using V = vector<T>;
using Vl = V<lint>; using VVl = V<Vl>;
template< typename T > ostream& operator<<(ostream & os, const vector< T > & v) {
for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : "");
return os;
}
template< typename T >istream& operator>>(istream & is, vector< T > & v) {
for (T& in : v) is >> in;
return is;
}
template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); }
lint ceil(lint a, lint b) { return (a + b - 1) / b; }
lint digit(lint a) { return (lint)log10(a); }
lint dist(plint a, plint b) { return abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second); }
void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); }
const lint MOD = 1e9 + 7, INF = 5e18;
lint dx[8] = { 1, 0, -1, 0, 1, -1, 1, -1 }, dy[8] = { 0, 1, 0, -1, -1, -1, 1, 1 };
void YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; } void yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; }
typedef pair<lint, string> Pa;
typedef pair<lint, plint> tlint;
struct Edge {
lint from, to;
lint cost;
Edge(lint u, lint v, lint c) {
cost = c;
from = u;
to = v;
}
bool operator<(const Edge& e) const {
return cost < e.cost;
}
};
struct WeightedEdge {
lint to;
lint cost;
WeightedEdge(lint v, lint c = 1) {
to = v;
cost = c;
}
bool operator<(const WeightedEdge& e) const {
return cost < e.cost;
}
};
using WeightedGraph = V<V<WeightedEdge>>;
template <std::int_fast64_t Modulus>
class modint
{
using u64 = std::int_fast64_t;
public:
u64 a;
constexpr modint(const u64 x = 0) noexcept : a(x% Modulus) {}
constexpr u64& value() noexcept { return a; }
constexpr const u64& value() const noexcept { return a; }
constexpr modint operator+(const modint rhs) const noexcept
{
return modint(*this) += rhs;
}
constexpr modint operator-(const modint rhs) const noexcept
{
return modint(*this) -= rhs;
}
constexpr modint operator*(const modint rhs) const noexcept
{
return modint(*this) *= rhs;
}
constexpr modint operator/(const modint rhs) const noexcept
{
return modint(*this) /= rhs;
}
constexpr modint& operator+=(const modint rhs) noexcept
{
a += rhs.a;
if (a >= Modulus)
{
a -= Modulus;
}
return *this;
}
constexpr modint& operator-=(const modint rhs) noexcept
{
if (a < rhs.a)
{
a += Modulus;
}
a -= rhs.a;
return *this;
}
constexpr modint& operator*=(const modint rhs) noexcept
{
a = a * rhs.a % Modulus;
return *this;
}
constexpr modint& operator/=(modint rhs) noexcept
{
u64 exp = Modulus - 2;
while (exp)
{
if (exp % 2)
{
*this *= rhs;
}
rhs *= rhs;
exp /= 2;
}
return *this;
}
};
typedef modint<MOD> ModInt;
ModInt mod_pow(ModInt x, lint n) {
ModInt ret = 1;
while (n > 0) {
if (n & 1) (ret *= x);
(x *= x);
n >>= 1;
}
return ret;
}
ModInt func[200000];
void funcinit(int N)
{
func[0] = 1;
for (int i = 1; i <= N; i++)
{
func[i] = func[i - 1] * i;
}
}
ModInt comb(ModInt n, ModInt r)
{
if (n.a <= 0 || n.a < r.a)
{
return 1;
}
return func[n.a] / (func[r.a] * func[(n - r).a]);
}
struct BinaryIndexedTree {
int n;
vector<lint> bit;
BinaryIndexedTree(int n_) : n(n_ + 1), bit(n, 0) {}
void add(int i, lint x) {
for (int idx = i; idx < n; idx += (idx & -idx)) {
bit[idx] += x;
}
}
lint sum(int i) {
lint s = 0;
for (int idx = i; idx > 0; idx -= (idx & -idx)) {
s += bit[idx];
}
return s;
}
int lower_bound(lint w) {
if (w <= 0) {
return 0;
}
else {
int x = 0, r = 1;
while (r < n) r = r << 1;
for (int len = r; len > 0; len = len >> 1) {
if (x + len < n && bit[x + len] < w) {
w -= bit[x + len];
x += len;
}
}
return x;
}
}
void show() {
for (int i = 0; i < n - 1; i++) {
cout << sum(i) - sum(i - 1) << " ";
}
cout << endk;
}
};
struct ExtendBinaryIndexedTree {
public:
ExtendBinaryIndexedTree(int _n) { init(_n); }
//半開区間[l, r)
void add(int l, int r, lint x) {
add_sub(0, l, -x * (l - 1));
add_sub(0, r, x * (r - 1));
add_sub(1, l, x);
add_sub(1, r, -x);
}
//区間[0, i)
lint sum(int i) {
return sum_sub(0, i) + sum_sub(1, i) * i;
}
void show() {
for (int i = 0; i < n - 1; i++) {
cout << sum(i + 1) - sum(i) << " ";
}
cout << endk;
}
private:
int n;
vector<lint> bit[2];
void init(int _n) {
n = _n + 1;
bit[0].assign(n, 0);
bit[1].assign(n, 0);
}
void add_sub(int p, int i, lint x) {
for (int idx = i; idx < n; idx += (idx & -idx)) {
bit[p][idx] += x;
}
}
lint sum_sub(int p, int i) {
lint s = 0;
for (int idx = i; idx > 0; idx -= (idx & -idx)) {
s += bit[p][idx];
}
return s;
}
};
lint N;
int main() {
cin.tie(0); ios_base::sync_with_stdio(false);
cin >> N;
vector<lint> arr(N);
set<lint> st;
REP(i, N) {
cin >> arr[i];
st.insert(arr[i]);
}
vector<lint> vec;
vec.push_back(0);
for (lint v : st) vec.push_back(v);
map<lint, lint> fx;
for (int i = 0; i < SZ(vec); i++) {
fx[vec[i]] = i;
}
REP(i, N) {
arr[i] = fx[arr[i]];
}
BinaryIndexedTree upper_sum(SZ(vec)), lower_sum(SZ(vec));
BinaryIndexedTree upper_tree(SZ(vec)), lower_tree(SZ(vec));
REP(i, N) {
lower_sum.add(arr[i], vec[arr[i]]);
lower_tree.add(arr[i], 1);
}
ModInt ans = 0;
REP(i, N) {
lower_sum.add(arr[i], -vec[arr[i]]);
lower_tree.add(arr[i], -1);
ModInt l = lower_tree.sum(arr[i] - 1), u = upper_tree.sum(SZ(vec)) - upper_tree.sum(arr[i]);
ans += u * lower_sum.sum(arr[i] - 1);
ans += u * l * vec[arr[i]];
ans += l * (upper_sum.sum(SZ(vec)) - upper_sum.sum(arr[i]));
upper_sum.add(arr[i], vec[arr[i]]);
upper_tree.add(arr[i], 1);
}
cout << ans.a << endk;
}
kaikey