結果

問題 No.1302 Random Tree Score
ユーザー sigma425
提出日時 2020-11-28 04:38:22
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,129 ms / 3,000 ms
コード長 11,894 bytes
コンパイル時間 2,782 ms
コンパイル使用メモリ 208,488 KB
最終ジャッジ日時 2025-01-16 09:08:42
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 14
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using uint = unsigned int;
#define rep(i,n) for(int i=0;i<int(n);i++)
#define rep1(i,n) for(int i=1;i<=int(n);i++)
#define per(i,n) for(int i=int(n)-1;i>=0;i--)
#define per1(i,n) for(int i=int(n);i>0;i--)
#define all(c) c.begin(),c.end()
#define si(x) int(x.size())
#define pb emplace_back
#define fs first
#define sc second
template<class T> using V = vector<T>;
template<class T> using VV = vector<vector<T>>;
template<class T,class U> void chmax(T& x, U y){if(x<y) x=y;}
template<class T,class U> void chmin(T& x, U y){if(y<x) x=y;}
template<class T> void mkuni(V<T>& v){sort(all(v));v.erase(unique(all(v)),v.end());}
template<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){
return o<<"("<<p.fs<<","<<p.sc<<")";
}
template<class T> ostream& operator<<(ostream& o,const vector<T> &vc){
o<<"{";
for(const T& v:vc) o<<v<<",";
o<<"}";
return o;
}
constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); }
#ifdef LOCAL
#define show(x) cerr << "LINE" << __LINE__ << " : " << #x << " = " << (x) << endl
void dmpr(ostream& os){os<<endl;}
template<class T,class... Args>
void dmpr(ostream&os,const T&t,const Args&... args){
os<<t<<" ~ ";
dmpr(os,args...);
}
#define shows(...) cerr << "LINE" << __LINE__ << " : ";dmpr(cerr,##__VA_ARGS__)
#define dump(x) cerr << "LINE" << __LINE__ << " : " << #x << " = {"; \
for(auto v: x) cerr << v << ","; cerr << "}" << endl;
#else
#define show(x) void(0)
#define dump(x) void(0)
#define shows(...) void(0)
#endif
template<unsigned int mod_>
struct ModInt{
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
constexpr static uint mod = mod_;
uint v;
ModInt():v(0){}
ModInt(ll _v):v(normS(_v%mod+mod)){}
explicit operator bool() const {return v!=0;}
static uint normS(const uint &x){return (x<mod)?x:x-mod;} // [0 , 2*mod-1] -> [0 , mod-1]
static ModInt make(const uint &x){ModInt m; m.v=x; return m;}
ModInt operator+(const ModInt& b) const { return make(normS(v+b.v));}
ModInt operator-(const ModInt& b) const { return make(normS(v+mod-b.v));}
ModInt operator-() const { return make(normS(mod-v)); }
ModInt operator*(const ModInt& b) const { return make((ull)v*b.v%mod);}
ModInt operator/(const ModInt& b) const { return *this*b.inv();}
ModInt& operator+=(const ModInt& b){ return *this=*this+b;}
ModInt& operator-=(const ModInt& b){ return *this=*this-b;}
ModInt& operator*=(const ModInt& b){ return *this=*this*b;}
ModInt& operator/=(const ModInt& b){ return *this=*this/b;}
ModInt& operator++(int){ return *this=*this+1;}
ModInt& operator--(int){ return *this=*this-1;}
ll extgcd(ll a,ll b,ll &x,ll &y) const{
ll p[]={a,1,0},q[]={b,0,1};
while(*q){
ll t=*p/ *q;
rep(i,3) swap(p[i]-=t*q[i],q[i]);
}
if(p[0]<0) rep(i,3) p[i]=-p[i];
x=p[1],y=p[2];
return p[0];
}
ModInt inv() const {
ll x,y;
extgcd(v,mod,x,y);
return make(normS(x+mod));
}
ModInt pow(ll p) const {
if(p<0) return inv().pow(-p);
ModInt a = 1;
ModInt x = *this;
while(p){
if(p&1) a *= x;
x *= x;
p >>= 1;
}
return a;
}
bool operator==(const ModInt& b) const { return v==b.v;}
bool operator!=(const ModInt& b) const { return v!=b.v;}
friend istream& operator>>(istream &o,ModInt& x){
ll tmp;
o>>tmp;
x=ModInt(tmp);
return o;
}
friend ostream& operator<<(ostream &o,const ModInt& x){ return o<<x.v;}
};
using mint = ModInt<998244353>;
V<mint> fact,ifact,invs;
mint Choose(int a,int b){
if(b<0 || a<b) return 0;
return fact[a] * ifact[b] * ifact[a-b];
}
void InitFact(int N){ //[0,N]
N++;
fact.resize(N);
ifact.resize(N);
invs.resize(N);
fact[0] = 1;
rep1(i,N-1) fact[i] = fact[i-1] * i;
ifact[N-1] = fact[N-1].inv();
for(int i=N-2;i>=0;i--) ifact[i] = ifact[i+1] * (i+1);
rep1(i,N-1) invs[i] = fact[i-1] * ifact[i];
}
int bsr(int x) { return 31 - __builtin_clz(x); }
void ntt(bool type, V<mint>& c) {
const mint G = 3; //primitive root
int N = int(c.size());
int s = bsr(N);
assert(1 << s == N);
V<mint> a = c, b(N);
rep1(i,s){
int W = 1 << (s - i);
mint base = G.pow((mint::mod - 1)>>i);
if(type) base = base.inv();
mint now = 1;
for(int y = 0; y < N / 2; y += W) {
for (int x = 0; x < W; x++) {
auto l = a[y << 1 | x];
auto r = now * a[y << 1 | x | W];
b[y | x] = l + r;
b[y | x | N >> 1] = l - r;
}
now *= base;
}
swap(a, b);
}
c = a;
}
V<mint> multiply_ntt(const V<mint>& a, const V<mint>& b) {
int A = int(a.size()), B = int(b.size());
if (!A || !B) return {};
int lg = 0;
while ((1 << lg) < A + B - 1) lg++;
int N = 1 << lg;
V<mint> ac(N), bc(N);
for (int i = 0; i < A; i++) ac[i] = a[i];
for (int i = 0; i < B; i++) bc[i] = b[i];
ntt(false, ac);
ntt(false, bc);
for (int i = 0; i < N; i++) {
ac[i] *= bc[i];
}
ntt(true, ac);
V<mint> c(A + B - 1);
mint iN = mint(N).inv();
for (int i = 0; i < A + B - 1; i++) {
c[i] = ac[i] * iN;
}
return c;
}
template<class D>
struct Poly{
vector<D> v;
int size() const{ return v.size();} //deg+1
Poly(){}
Poly(vector<D> _v) : v(_v){shrink();}
Poly& shrink(){
while(!v.empty()&&v.back()==D(0)) v.pop_back();
return *this;
}
D& operator[](int i){return v[i];}
const D& operator[](int i) const {return v[i];}
D at(int i) const{
return (i<size())?v[i]:D(0);
}
void set(int i,const D& x){ //v[i] := x
if(i>=size() && !x) return;
while(i>=size()) v.push_back(D(0));
v[i]=x;
shrink();
return;
}
D operator()(D x) const {
D res = 0;
int n = size();
D a = 1;
rep(i,n){
res += a*v[i];
a *= x;
}
return res;
}
Poly operator+(const Poly &r) const{
int N=max(size(),r.size());
vector<D> ret(N);
rep(i,N) ret[i]=at(i)+r.at(i);
return Poly(ret);
}
Poly operator-(const Poly &r) const{
int N=max(size(),r.size());
vector<D> ret(N);
rep(i,N) ret[i]=at(i)-r.at(i);
return Poly(ret);
}
Poly operator-() const{
int N=size();
vector<D> ret(N);
rep(i,N) ret[i] = -at(i);
return Poly(ret);
}
Poly operator*(const Poly &r) const{
if(size()==0||r.size()==0) return Poly();
return mul_ntt(r); // FFT or NTT ?
}
Poly operator*(const D &r) const{
int N=size();
vector<D> ret(N);
rep(i,N) ret[i]=v[i]*r;
return Poly(ret);
}
Poly operator/(const D &r) const{
return *this * r.inv();
}
Poly operator/(const Poly &y) const{
return div_fast(y);
}
Poly operator%(const Poly &y) const{
return rem_fast(y);
// return rem_naive(y);
}
Poly operator<<(const int &n) const{ // *=x^n
assert(n>=0);
int N=size();
vector<D> ret(N+n);
rep(i,N) ret[i+n]=v[i];
return Poly(ret);
}
Poly operator>>(const int &n) const{ // /=x^n
assert(n>=0);
int N=size();
if(N<=n) return Poly();
vector<D> ret(N-n);
rep(i,N-n) ret[i]=v[i+n];
return Poly(ret);
}
bool operator==(const Poly &y) const{
return v==y.v;
}
bool operator!=(const Poly &y) const{
return v!=y.v;
}
Poly& operator+=(const Poly &r) {return *this = *this+r;}
Poly& operator-=(const Poly &r) {return *this = *this-r;}
Poly& operator*=(const Poly &r) {return *this = *this*r;}
Poly& operator*=(const D &r) {return *this = *this*r;}
Poly& operator/=(const Poly &r) {return *this = *this/r;}
Poly& operator/=(const D &r) {return *this = *this/r;}
Poly& operator%=(const Poly &y) {return *this = *this%y;}
Poly& operator<<=(const int &n) {return *this = *this<<n;}
Poly& operator>>=(const int &n) {return *this = *this>>n;}
Poly diff() const {
int n = size();
if(n == 0) return Poly();
V<D> u(n-1);
rep(i,n-1) u[i] = at(i+1) * (i+1);
return Poly(u);
}
Poly intg() const {
int n = size();
V<D> u(n+1);
rep(i,n) u[i+1] = at(i) / (i+1);
return Poly(u);
}
Poly pow(long long n, int L) const { // f^n, ignoring x^L,x^{L+1},..
Poly a({1});
Poly x = *this;
while(n){
if(n&1){
a *= x;
a = a.strip(L);
}
x *= x;
x = x.strip(L);
n /= 2;
}
return a;
}
/*
[x^0~n] exp(f) = 1 + f + f^2 / 2 + f^3 / 6 + ..
f(0) should be 0
O((N+n) log n) (N = size())
NTT, -O3
- N = n = 100000 : 200 [ms]
- N = n = 200000 : 400 [ms]
- N = n = 500000 : 1000 [ms]
*/
Poly exp(int n) const {
assert(at(0) == 0);
Poly f({1}), g({1});
for(int i=1;i<=n;i*=2){
g = (g*2 - f*g*g).strip(i);
Poly q = (this->diff()).strip(i-1);
Poly w = (q + g * (f.diff() - f*q)) .strip(2*i-1);
f = (f + f * (*this - w.intg()).strip(2*i)) .strip(2*i);
}
return f.strip(n+1);
}
/*
[x^0~n] log(f) = log(1-(1-f)) = - (1-f) - (1-f)^2 / 2 - (1-f)^3 / 3 - ...
f(0) should be 1
O(n log n)
NTT, -O3
1e5 : 140 [ms]
2e5 : 296 [ms]
5e5 : 640 [ms]
1e6 : 1343 [ms]
*/
Poly log(int n) const {
assert(at(0) == 1);
auto f = strip(n+1);
return (f.diff() * f.inv(n)).strip(n).intg();
}
/*
[x^0~n] sqrt(f)
f(0) should be 1
+- 2 1
O(n log n)
NTT, -O3
1e5 : 234 [ms]
2e5 : 484 [ms]
5e5 : 1000 [ms]
1e6 : 2109 [ms]
*/
Poly sqrt(int n) const {
assert(at(0) == 1);
Poly f = strip(n+1);
Poly g({1});
for(int i=1; i<=n; i*=2){
g = (g + f.strip(2*i)*g.inv(2*i-1)) / 2;
}
return g.strip(n+1);
}
/*
[x^0~n] f^-1 = (1-(1-f))^-1 = (1-f) + (1-f)^2 + ...
f * f.inv(n) = 1 + x^n * poly
f(0) should be non0
O(n log n)
*/
Poly inv(int n) const {
assert(at(0) != 0);
Poly f = strip(n+1);
Poly g({at(0).inv()});
for(int i=1; i<=n; i*=2){ //need to strip!!
g *= (Poly({2}) - f.strip(2*i)*g).strip(2*i);
}
return g.strip(n+1);
}
Poly exp_naive(int n) const {
assert(at(0) == 0);
Poly res;
Poly fk({1});
rep(k,n+1){
res += fk;
fk *= *this;
fk = fk.strip(n+1) / (k+1);
}
return res;
}
Poly log_naive(int n) const {
assert(at(0) == 1);
Poly res;
Poly g({1});
rep1(k,n){
g *= (Poly({1}) - *this);
g = g.strip(n+1);
res -= g / k;
}
return res;
}
Poly mul_naive(const Poly &r) const{
int N=size(),M=r.size();
vector<D> ret(N+M-1);
rep(i,N) rep(j,M) ret[i+j]+=at(i)*r.at(j);
return Poly(ret);
}
Poly mul_ntt(const Poly &r) const{
return Poly(multiply_ntt(v,r.v));
}
Poly mul_fft(const Poly &r) const{
return Poly(multiply_fft(v,r.v));
}
Poly div_fast_with_inv(const Poly &inv, int B) const {
return (*this * inv)>>(B-1);
}
Poly div_fast(const Poly &y) const{
if(size()<y.size()) return Poly();
int n = size();
return div_fast_with_inv(y.inv_div(n-1),n);
}
Poly rem_naive(const Poly &y) const{
Poly x = *this;
while(y.size()<=x.size()){
int N=x.size(),M=y.size();
D coef = x.v[N-1]/y.v[M-1];
x -= (y<<(N-M))*coef;
}
return x;
}
Poly rem_fast(const Poly &y) const{
return *this - y * div_fast(y);
}
Poly strip(int n) const { //ignore x^n , x^n+1,...
vector<D> res = v;
res.resize(min(n,size()));
return Poly(res);
}
Poly rev(int n = -1) const { //ignore x^n ~ -> return x^(n-1) * f(1/x)
vector<D> res = v;
if(n!=-1) res.resize(n);
reverse(all(res));
return Poly(res);
}
/*
f.inv_div(n) = x^n / f
f should be non0
O((N+n) log n)
for division
*/
Poly inv_div(int n) const {
n++;
int d = size() - 1;
assert(d != -1);
if(n < d) return Poly();
Poly a = rev();
Poly g({at(d).inv()});
for(int i=1; i+d<=n; i*=2){ //need to strip!!
g *= (Poly({2})-a.strip(2*i)*g).strip(2*i);
}
return g.rev(n-d);
}
friend ostream& operator<<(ostream &o,const Poly& x){
if(x.size()==0) return o<<0;
rep(i,x.size()) if(x.v[i]!=D(0)){
o<<x.v[i]<<"x^"<<i;
if(i!=x.size()-1) o<<" + ";
}
return o;
}
};
int main(){
cin.tie(0);
ios::sync_with_stdio(false); //DON'T USE scanf/printf/puts !!
cout << fixed << setprecision(20);
InitFact(100010);
int N; cin >> N;
// int N = 100000;
Poly<mint> f;
rep(i,N-1) f.set(i,ifact[i]*(i+1));
f = f.pow(N,N-1);
cout << f[N-2]*fact[N-2] / mint(N).pow(N-2) << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0