結果
問題 | No.1301 Strange Graph Shortest Path |
ユーザー | Kude |
提出日時 | 2020-11-28 04:47:14 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 189 ms / 3,000 ms |
コード長 | 6,209 bytes |
コンパイル時間 | 2,656 ms |
コンパイル使用メモリ | 223,884 KB |
実行使用メモリ | 36,648 KB |
最終ジャッジ日時 | 2024-09-12 21:59:59 |
合計ジャッジ時間 | 9,083 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 148 ms
36,008 KB |
testcase_03 | AC | 123 ms
31,972 KB |
testcase_04 | AC | 182 ms
34,800 KB |
testcase_05 | AC | 126 ms
35,504 KB |
testcase_06 | AC | 162 ms
32,304 KB |
testcase_07 | AC | 153 ms
34,324 KB |
testcase_08 | AC | 133 ms
33,112 KB |
testcase_09 | AC | 138 ms
30,772 KB |
testcase_10 | AC | 120 ms
31,996 KB |
testcase_11 | AC | 150 ms
33,380 KB |
testcase_12 | AC | 145 ms
33,224 KB |
testcase_13 | AC | 133 ms
35,700 KB |
testcase_14 | AC | 155 ms
30,752 KB |
testcase_15 | AC | 132 ms
32,352 KB |
testcase_16 | AC | 170 ms
34,708 KB |
testcase_17 | AC | 157 ms
36,648 KB |
testcase_18 | AC | 139 ms
33,100 KB |
testcase_19 | AC | 138 ms
32,532 KB |
testcase_20 | AC | 154 ms
31,452 KB |
testcase_21 | AC | 151 ms
34,896 KB |
testcase_22 | AC | 170 ms
32,284 KB |
testcase_23 | AC | 135 ms
35,908 KB |
testcase_24 | AC | 161 ms
32,028 KB |
testcase_25 | AC | 161 ms
34,768 KB |
testcase_26 | AC | 144 ms
33,520 KB |
testcase_27 | AC | 136 ms
33,972 KB |
testcase_28 | AC | 125 ms
35,032 KB |
testcase_29 | AC | 189 ms
34,728 KB |
testcase_30 | AC | 146 ms
34,656 KB |
testcase_31 | AC | 160 ms
34,276 KB |
testcase_32 | AC | 2 ms
6,944 KB |
testcase_33 | AC | 96 ms
29,608 KB |
testcase_34 | AC | 144 ms
36,204 KB |
ソースコード
#include<bits/stdc++.h> #include <algorithm> #include <cassert> #include <limits> #include <queue> #include <vector> namespace atcoder { template <class Cap, class Cost> struct mcf_graph { public: mcf_graph() {} mcf_graph(int n) : _n(n), g(n) {} int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); assert(0 <= cap); assert(0 <= cost); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); int from_id = int(g[from].size()); int to_id = int(g[to].size()); if (from == to) to_id++; g[from].push_back(_edge{to, to_id, cap, cost}); g[to].push_back(_edge{from, from_id, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector<edge> edges() { int m = int(pos.size()); std::vector<edge> result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); } std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()); } std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); // variants (C = maxcost): // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge std::vector<Cost> dual(_n, 0), dist(_n); std::vector<int> pv(_n), pe(_n); std::vector<bool> vis(_n); auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue<Q> que; dist[s] = 0; que.push(Q{0, s}); while (!que.empty()) { int v = que.top().to; que.pop(); if (vis[v]) continue; vis[v] = true; if (v == t) break; // dist[v] = shortest(s, v) + dual[s] - dual[v] // dist[v] >= 0 (all reduced cost are positive) // dist[v] <= (n-1)C for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; // |-dual[e.to] + dual[v]| <= (n-1)C // cost <= C - -(n-1)C + 0 = nC Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{dist[e.to], e.to}); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; // dual[v] = dual[v] - dist[t] + dist[v] // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v]) // = - shortest(s, t) + dual[t] + shortest(s, v) // = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost_per_flow = -1; std::vector<std::pair<Cap, Cost>> result; result.push_back({flow, cost}); while (flow < flow_limit) { if (!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost_per_flow == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost_per_flow = d; } return result; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector<std::pair<int, int>> pos; std::vector<std::vector<_edge>> g; }; } // namespace atcoder using namespace std; using namespace atcoder; #define rep(i,n) for(int i = 0; i < (n); ++i) #define rrep(i,n) for(int i = (n)-1; i >= 0; --i) #define chmax(a, b) a = max(a, b) #define chmin(a, b) a = min(a, b) #define all(x) (x).begin(), (x).end() #define rall(x) (x).rbegin(), (x).rend() using ll = long long; using P = pair<int,int>; using VI = vector<int>; using VVI = vector<VI>; using VL = vector<ll>; using VVL = vector<VL>; int main() { ios::sync_with_stdio(false); cin.tie(0); int n, m; cin >> n >> m; mcf_graph<int,ll> g(n); rep(_, m) { int u, v, c, d; cin >> u >> v >> c >> d; --u, --v; g.add_edge(u, v, 1, c); g.add_edge(u, v, 1, d); g.add_edge(v, u, 1, c); g.add_edge(v, u, 1, d); } auto [f, c] = g.flow(0, n - 1, 2); cout << c << endl; }