結果
| 問題 |
No.1301 Strange Graph Shortest Path
|
| コンテスト | |
| ユーザー |
stoq
|
| 提出日時 | 2020-11-28 08:04:48 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 188 ms / 3,000 ms |
| コード長 | 7,764 bytes |
| コンパイル時間 | 2,641 ms |
| コンパイル使用メモリ | 218,516 KB |
| 最終ジャッジ日時 | 2025-01-16 09:13:01 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 33 |
ソースコード
#define MOD_TYPE 2
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
#if 0
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#if 1
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-7;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
struct io_init
{
io_init()
{
cin.tie(0);
ios::sync_with_stdio(false);
cout << setprecision(30) << setiosflags(ios::fixed);
};
} io_init;
template <typename T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return true;
}
return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return true;
}
return false;
}
inline ll CEIL(ll a, ll b)
{
return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept
{
is >> p.first >> p.second;
return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
os << p.first << " " << p.second;
return os;
}
#pragma endregion
namespace atcoder
{
template <class Cap, class Cost>
struct mcf_graph
{
public:
mcf_graph() {}
mcf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap, Cost cost)
{
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
int from_id = int(g[from].size());
int to_id = int(g[to].size());
if (from == to)
to_id++;
g[from].push_back(_edge{to, to_id, cap, cost});
g[to].push_back(_edge{from, from_id, 0, -cost});
return m;
}
struct edge
{
int from, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(int i)
{
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{
pos[i].first,
_e.to,
_e.cap + _re.cap,
_re.cap,
_e.cost,
};
}
std::vector<edge> edges()
{
int m = int(pos.size());
std::vector<edge> result(m);
for (int i = 0; i < m; i++)
{
result[i] = get_edge(i);
}
return result;
}
std::pair<Cap, Cost> flow(int s, int t)
{
return flow(s, t, std::numeric_limits<Cap>::max());
}
std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit)
{
return slope(s, t, flow_limit).back();
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t)
{
return slope(s, t, std::numeric_limits<Cap>::max());
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit)
{
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
// variants (C = maxcost):
// -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
// reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
std::vector<Cost> dual(_n, 0), dist(_n);
std::vector<int> pv(_n), pe(_n);
std::vector<bool> vis(_n);
auto dual_ref = [&]() {
std::fill(dist.begin(), dist.end(),
std::numeric_limits<Cost>::max());
std::fill(pv.begin(), pv.end(), -1);
std::fill(pe.begin(), pe.end(), -1);
std::fill(vis.begin(), vis.end(), false);
struct Q
{
Cost key;
int to;
bool operator<(Q r) const { return key > r.key; }
};
std::priority_queue<Q> que;
dist[s] = 0;
que.push(Q{0, s});
while (!que.empty())
{
int v = que.top().to;
que.pop();
if (vis[v])
continue;
vis[v] = true;
if (v == t)
break;
// dist[v] = shortest(s, v) + dual[s] - dual[v]
// dist[v] >= 0 (all reduced cost are positive)
// dist[v] <= (n-1)C
for (int i = 0; i < int(g[v].size()); i++)
{
auto e = g[v][i];
if (vis[e.to] || !e.cap)
continue;
// |-dual[e.to] + dual[v]| <= (n-1)C
// cost <= C - -(n-1)C + 0 = nC
Cost cost = e.cost - dual[e.to] + dual[v];
if (dist[e.to] - dist[v] > cost)
{
dist[e.to] = dist[v] + cost;
pv[e.to] = v;
pe[e.to] = i;
que.push(Q{dist[e.to], e.to});
}
}
}
if (!vis[t])
{
return false;
}
for (int v = 0; v < _n; v++)
{
if (!vis[v])
continue;
// dual[v] = dual[v] - dist[t] + dist[v]
// = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
// = - shortest(s, t) + dual[t] + shortest(s, v)
// = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
dual[v] -= dist[t] - dist[v];
}
return true;
};
Cap flow = 0;
Cost cost = 0, prev_cost_per_flow = -1;
std::vector<std::pair<Cap, Cost>> result;
result.push_back({flow, cost});
while (flow < flow_limit)
{
if (!dual_ref())
break;
Cap c = flow_limit - flow;
for (int v = t; v != s; v = pv[v])
{
c = std::min(c, g[pv[v]][pe[v]].cap);
}
for (int v = t; v != s; v = pv[v])
{
auto &e = g[pv[v]][pe[v]];
e.cap -= c;
g[v][e.rev].cap += c;
}
Cost d = -dual[s];
flow += c;
cost += c * d;
if (prev_cost_per_flow == d)
{
result.pop_back();
}
result.push_back({flow, cost});
prev_cost_per_flow = d;
}
return result;
}
private:
int _n;
struct _edge
{
int to, rev;
Cap cap;
Cost cost;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
} // namespace atcoder
void solve()
{
int n, m;
cin >> n >> m;
atcoder::mcf_graph<int, ll> G(n);
rep(i, m)
{
int u, v;
ll c, d;
cin >> u >> v >> c >> d;
u--, v--;
G.add_edge(u, v, 1, c);
G.add_edge(u, v, 1, d);
swap(u, v);
G.add_edge(u, v, 1, c);
G.add_edge(u, v, 1, d);
}
cout << G.flow(0, n - 1, 2).second << "\n";
}
int main()
{
solve();
}
stoq