結果

問題 No.1301 Strange Graph Shortest Path
ユーザー keijakkeijak
提出日時 2020-11-28 08:15:50
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 197 ms / 3,000 ms
コード長 8,197 bytes
コンパイル時間 2,670 ms
コンパイル使用メモリ 222,664 KB
実行使用メモリ 36,468 KB
最終ジャッジ日時 2024-09-12 22:08:54
合計ジャッジ時間 9,289 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 144 ms
35,984 KB
testcase_03 AC 120 ms
33,060 KB
testcase_04 AC 183 ms
34,752 KB
testcase_05 AC 128 ms
35,268 KB
testcase_06 AC 165 ms
32,312 KB
testcase_07 AC 151 ms
34,752 KB
testcase_08 AC 124 ms
32,272 KB
testcase_09 AC 131 ms
30,632 KB
testcase_10 AC 119 ms
31,920 KB
testcase_11 AC 152 ms
33,228 KB
testcase_12 AC 151 ms
33,248 KB
testcase_13 AC 135 ms
35,428 KB
testcase_14 AC 160 ms
31,624 KB
testcase_15 AC 129 ms
31,644 KB
testcase_16 AC 175 ms
34,572 KB
testcase_17 AC 153 ms
36,468 KB
testcase_18 AC 142 ms
33,184 KB
testcase_19 AC 142 ms
32,504 KB
testcase_20 AC 165 ms
31,568 KB
testcase_21 AC 156 ms
35,188 KB
testcase_22 AC 172 ms
32,252 KB
testcase_23 AC 136 ms
35,840 KB
testcase_24 AC 174 ms
32,076 KB
testcase_25 AC 172 ms
34,760 KB
testcase_26 AC 153 ms
33,184 KB
testcase_27 AC 142 ms
33,444 KB
testcase_28 AC 125 ms
35,744 KB
testcase_29 AC 197 ms
33,856 KB
testcase_30 AC 152 ms
34,576 KB
testcase_31 AC 164 ms
34,188 KB
testcase_32 AC 2 ms
6,944 KB
testcase_33 AC 96 ms
30,156 KB
testcase_34 AC 149 ms
36,240 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>


#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>

namespace atcoder {

template <class Cap, class Cost> struct mcf_graph {
  public:
    mcf_graph() {}
    mcf_graph(int n) : _n(n), g(n) {}

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        assert(0 <= cost);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        int from_id = int(g[from].size());
        int to_id = int(g[to].size());
        if (from == to) to_id++;
        g[from].push_back(_edge{to, to_id, cap, cost});
        g[to].push_back(_edge{from, from_id, 0, -cost});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{
            pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
        };
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result(m);
        for (int i = 0; i < m; i++) {
            result[i] = get_edge(i);
        }
        return result;
    }

    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
        std::vector<Cost> dual(_n, 0), dist(_n);
        std::vector<int> pv(_n), pe(_n);
        std::vector<bool> vis(_n);
        auto dual_ref = [&]() {
            std::fill(dist.begin(), dist.end(),
                      std::numeric_limits<Cost>::max());
            std::fill(pv.begin(), pv.end(), -1);
            std::fill(pe.begin(), pe.end(), -1);
            std::fill(vis.begin(), vis.end(), false);
            struct Q {
                Cost key;
                int to;
                bool operator<(Q r) const { return key > r.key; }
            };
            std::priority_queue<Q> que;
            dist[s] = 0;
            que.push(Q{0, s});
            while (!que.empty()) {
                int v = que.top().to;
                que.pop();
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                for (int i = 0; i < int(g[v].size()); i++) {
                    auto e = g[v][i];
                    if (vis[e.to] || !e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual[e.to] + dual[v];
                    if (dist[e.to] - dist[v] > cost) {
                        dist[e.to] = dist[v] + cost;
                        pv[e.to] = v;
                        pe[e.to] = i;
                        que.push(Q{dist[e.to], e.to});
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
                //         = - shortest(s, t) + dual[t] + shortest(s, v)
                //         = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
                dual[v] -= dist[t] - dist[v];
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost_per_flow = -1;
        std::vector<std::pair<Cap, Cost>> result;
        result.push_back({flow, cost});
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = pv[v]) {
                c = std::min(c, g[pv[v]][pe[v]].cap);
            }
            for (int v = t; v != s; v = pv[v]) {
                auto& e = g[pv[v]][pe[v]];
                e.cap -= c;
                g[v][e.rev].cap += c;
            }
            Cost d = -dual[s];
            flow += c;
            cost += c * d;
            if (prev_cost_per_flow == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost_per_flow = d;
        }
        return result;
    }

  private:
    int _n;

    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder


#define REP(i, n) for (int i = 0, REP_N_ = (n); i < REP_N_; ++i)
#define ALL(x) std::begin(x), std::end(x)
using i64 = long long;
using u64 = unsigned long long;

template <class T>
inline int ssize(const T &a) {
  return (int)std::size(a);
}
template <class T>
inline bool chmax(T &a, T b) {
  return a < b and ((a = std::move(b)), true);
}
template <class T>
inline bool chmin(T &a, T b) {
  return a > b and ((a = std::move(b)), true);
}

template <typename T>
std::istream &operator>>(std::istream &is, std::vector<T> &a) {
  for (auto &x : a) is >> x;
  return is;
}
template <typename Container>
std::ostream &pprint(const Container &a, std::string_view sep = " ",
                     std::string_view ends = "\n", std::ostream *os = nullptr) {
  if (os == nullptr) os = &std::cout;
  auto b = std::begin(a), e = std::end(a);
  for (auto it = std::begin(a); it != e; ++it) {
    if (it != b) *os << sep;
    *os << *it;
  }
  return *os << ends;
}
template <typename T, typename = void>
struct is_iterable : std::false_type {};
template <typename T>
struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())),
                                  decltype(std::end(std::declval<T>()))>>
    : std::true_type {};

template <typename T, typename = std::enable_if_t<
                          is_iterable<T>::value &&
                          !std::is_same<T, std::string_view>::value &&
                          !std::is_same<T, std::string>::value>>
std::ostream &operator<<(std::ostream &os, const T &a) {
  return pprint(a, ", ", "", &(os << "{")) << "}";
}
template <typename T, typename U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &a) {
  return os << "(" << a.first << ", " << a.second << ")";
}

#ifdef ENABLE_DEBUG
template <typename T>
void pdebug(const T &value) {
  std::cerr << value;
}
template <typename T, typename... Ts>
void pdebug(const T &value, const Ts &...args) {
  pdebug(value);
  std::cerr << ", ";
  pdebug(args...);
}
#define DEBUG(...)                                   \
  do {                                               \
    std::cerr << " \033[33m (L" << __LINE__ << ") "; \
    std::cerr << #__VA_ARGS__ << ":\033[0m ";        \
    pdebug(__VA_ARGS__);                             \
    std::cerr << std::endl;                          \
  } while (0)
#else
#define pdebug(...)
#define DEBUG(...)
#endif

using namespace std;

i64 solve() {
  int N, M;
  cin >> N >> M;
  atcoder::mcf_graph<int, i64> g(N);
  REP(i, M) {
    i64 u, v, c, d;
    cin >> u >> v >> c >> d;
    --u, --v;
    g.add_edge(u, v, 1, c);
    g.add_edge(v, u, 1, c);
    g.add_edge(u, v, 1, d);
    g.add_edge(v, u, 1, d);
  }
  auto [f, cost] = g.flow(0, N - 1, 2);
  return cost;
}
int main() {
  ios::sync_with_stdio(false);
  cin.tie(nullptr);
  cout << solve() << endl;
}
0