結果

問題 No.1301 Strange Graph Shortest Path
ユーザー tarattata1tarattata1
提出日時 2020-11-28 10:42:28
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 7,010 bytes
コンパイル時間 685 ms
コンパイル使用メモリ 78,980 KB
最終ジャッジ日時 2024-11-14 23:55:29
合計ジャッジ時間 2,021 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
main.cpp: In member function 'std::pair<_T1, _T2> {anonymous}::mcf_graph<Cap, Cost>::flow(int, int)':
main.cpp:83:36: error: 'numeric_limits' is not a member of 'std'
   83 |             return flow(s, t, std::numeric_limits<Cap>::max());
      |                                    ^~~~~~~~~~~~~~
main.cpp:83:54: error: expected primary-expression before '>' token
   83 |             return flow(s, t, std::numeric_limits<Cap>::max());
      |                                                      ^
main.cpp:83:60: error: no matching function for call to 'max()'
   83 |             return flow(s, t, std::numeric_limits<Cap>::max());
      |                                                       ~~~~~^~
In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/string:50,
                 from main.cpp:2:
/home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_algobase.h:254:5: note: candidate: 'template<class _Tp> constexpr const _Tp& std::max(const _Tp&, const _Tp&)'
  254 |     max(const _Tp& __a, const _Tp& __b)
      |     ^~~
/home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_algobase.h:254:5: note:   template argument deduction/substitution failed:
main.cpp:83:60: note:   candidate expects 2 arguments, 0 provided
   83 |             return flow(s, t, std::numeric_limits<Cap>::max());
      |                                                       ~~~~~^~
/home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_algobase.h:300:5: note: candidate: 'template<class _Tp, class _Compare> constexpr const _Tp& std::max(const _Tp&, const _Tp&, _Compare)'
  300 |     max(const _Tp& __a, const _Tp& __b, _Compare __comp)
      |     ^~~
/home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_algobase.h:300:5: note:   template argument deduction/substitution failed:
main.cpp:83:60: note:   candidate expects 3 arguments, 0 provided
   83 |             return flow(s, t, std::numeric_limits<C

ソースコード

diff #

#include <cstdio>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <list>
#include <iterator>
#include <cassert>
#include <numeric>
#include <functional>
#include <time.h>
#pragma warning(disable:4996) 

//#define ATCODER
#ifdef ATCODER
#include <atcoder/all>
#endif

typedef long long ll;
typedef unsigned long long ull;
#define LINF  9223300000000000000
#define LINF2 1223300000000000000
#define LINF3 1000000000000
#define INF 2140000000
//const long long MOD = 1000000007;
const long long MOD = 998244353;


using namespace std;
#ifdef ATCODER
using namespace atcoder;
#endif


namespace {

    template <class Cap, class Cost> struct mcf_graph {
    public:
        mcf_graph() {}
        mcf_graph(int n) : _n(n), g(n) {}

        int add_edge(int from, int to, Cap cap, Cost cost) {
            assert(0 <= from && from < _n);
            assert(0 <= to && to < _n);
            int m = int(pos.size());
            pos.push_back({ from, int(g[from].size()) });
            g[from].push_back(_edge{ to, int(g[to].size()), cap, cost });
            g[to].push_back(_edge{ from, int(g[from].size()) - 1, 0, -cost });
            return m;
        }

        struct edge {
            int from, to;
            Cap cap, flow;
            Cost cost;
        };

        edge get_edge(int i) {
            int m = int(pos.size());
            assert(0 <= i && i < m);
            auto _e = g[pos[i].first][pos[i].second];
            auto _re = g[_e.to][_e.rev];
            return edge{
                pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
            };
        }
        std::vector<edge> edges() {
            int m = int(pos.size());
            std::vector<edge> result(m);
            for (int i = 0; i < m; i++) {
                result[i] = get_edge(i);
            }
            return result;
        }

        std::pair<Cap, Cost> flow(int s, int t) {
            return flow(s, t, std::numeric_limits<Cap>::max());
        }
        std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
            return slope(s, t, flow_limit).back();
        }
        std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
            return slope(s, t, std::numeric_limits<Cap>::max());
        }
        std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
            assert(0 <= s && s < _n);
            assert(0 <= t && t < _n);
            assert(s != t);
            // variants (C = maxcost):
            // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
            // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
            std::vector<Cost> dual(_n, 0), dist(_n);
            std::vector<int> pv(_n), pe(_n);
            std::vector<bool> vis(_n);
            auto dual_ref = [&]() {
                std::fill(dist.begin(), dist.end(),
                    std::numeric_limits<Cost>::max());
                std::fill(pv.begin(), pv.end(), -1);
                std::fill(pe.begin(), pe.end(), -1);
                std::fill(vis.begin(), vis.end(), false);
                struct Q {
                    Cost key;
                    int to;
                    bool operator<(Q r) const { return key > r.key; }
                };
                std::priority_queue<Q> que;
                dist[s] = 0;
                que.push(Q{ 0, s });
                while (!que.empty()) {
                    int v = que.top().to;
                    que.pop();
                    if (vis[v]) continue;
                    vis[v] = true;
                    if (v == t) break;
                    // dist[v] = shortest(s, v) + dual[s] - dual[v]
                    // dist[v] >= 0 (all reduced cost are positive)
                    // dist[v] <= (n-1)C
                    for (int i = 0; i < int(g[v].size()); i++) {
                        auto e = g[v][i];
                        if (vis[e.to] || !e.cap) continue;
                        // |-dual[e.to] + dual[v]| <= (n-1)C
                        // cost <= C - -(n-1)C + 0 = nC
                        Cost cost = e.cost - dual[e.to] + dual[v];
                        if (dist[e.to] - dist[v] > cost) {
                            dist[e.to] = dist[v] + cost;
                            pv[e.to] = v;
                            pe[e.to] = i;
                            que.push(Q{ dist[e.to], e.to });
                        }
                    }
                }
                if (!vis[t]) {
                    return false;
                }

                for (int v = 0; v < _n; v++) {
                    if (!vis[v]) continue;
                    // dual[v] = dual[v] - dist[t] + dist[v]
                    //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
                    //         = - shortest(s, t) + dual[t] + shortest(s, v)
                    //         = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
                    dual[v] -= dist[t] - dist[v];
                }
                return true;
            };
            Cap flow = 0;
            Cost cost = 0, prev_cost = -1;
            std::vector<std::pair<Cap, Cost>> result;
            result.push_back({ flow, cost });
            while (flow < flow_limit) {
                if (!dual_ref()) break;
                Cap c = flow_limit - flow;
                for (int v = t; v != s; v = pv[v]) {
                    c = std::min(c, g[pv[v]][pe[v]].cap);
                }
                for (int v = t; v != s; v = pv[v]) {
                    auto& e = g[pv[v]][pe[v]];
                    e.cap -= c;
                    g[v][e.rev].cap += c;
                }
                Cost d = -dual[s];
                flow += c;
                cost += c * d;
                if (prev_cost == d) {
                    result.pop_back();
                }
                result.push_back({ flow, cost });
                prev_cost = cost;
            }
            return result;
        }

    private:
        int _n;

        struct _edge {
            int to, rev;
            Cap cap;
            Cost cost;
        };

        std::vector<std::pair<int, int>> pos;
        std::vector<std::vector<_edge>> g;
    };

}  // namespace atcoder

void solve()
{
    int n, m;
    scanf("%d%d", &n, &m);
    mcf_graph<int, long long> g(n+1);

    g.add_edge(n, 0, 2, 0);
    int i;
    for (i = 0; i < m; i++) {
        int u, v, c, d;
        scanf("%d%d%d%d", &u, &v, &c, &d); u--; v--;
        g.add_edge(u, v, 1, c);
        g.add_edge(v, u, 1, c);
        g.add_edge(u, v, 1, d);
        g.add_edge(v, u, 1, d);
    }
    auto res = g.flow(n, n - 1);
    printf("%lld\n", res.second);

    return;
}

int main()
{
#if 1
    solve();
#else
    int T;
    scanf("%d", &T);
    int t;
    for (t = 0; t < T; t++) {
        //printf("Case #%d: ", t + 1);
        solve();
    }
#endif
    return 0;
}
0