結果

問題 No.1302 Random Tree Score
ユーザー rniyarniya
提出日時 2020-11-28 11:48:25
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 433 ms / 3,000 ms
コード長 15,692 bytes
コンパイル時間 2,955 ms
コンパイル使用メモリ 228,504 KB
実行使用メモリ 15,688 KB
最終ジャッジ日時 2024-09-12 22:19:30
合計ジャッジ時間 7,497 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 4 ms
6,816 KB
testcase_01 AC 4 ms
6,812 KB
testcase_02 AC 99 ms
6,992 KB
testcase_03 AC 207 ms
9,564 KB
testcase_04 AC 101 ms
7,188 KB
testcase_05 AC 428 ms
14,572 KB
testcase_06 AC 428 ms
14,736 KB
testcase_07 AC 100 ms
7,112 KB
testcase_08 AC 210 ms
10,104 KB
testcase_09 AC 431 ms
15,684 KB
testcase_10 AC 423 ms
13,684 KB
testcase_11 AC 99 ms
6,940 KB
testcase_12 AC 431 ms
14,308 KB
testcase_13 AC 4 ms
6,940 KB
testcase_14 AC 432 ms
15,688 KB
testcase_15 AC 433 ms
15,572 KB
testcase_16 AC 4 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
// const long long MOD=1000000007;
const long long MOD=998244353;
#define LOCAL
#pragma region Macros
typedef long long ll;
typedef __int128_t i128;
typedef unsigned int uint;
typedef unsigned long long ull;
#define ALL(x) (x).begin(),(x).end()
const int INF=1e9;
const long long IINF=1e18;
const int dx[4]={1,0,-1,0},dy[4]={0,1,0,-1};
const char dir[4]={'D','R','U','L'};

template<typename T>
istream &operator>>(istream &is,vector<T> &v){
    for (T &x:v) is >> x;
    return is;
}
template<typename T>
ostream &operator<<(ostream &os,const vector<T> &v){
    for (int i=0;i<v.size();++i){
        os << v[i] << (i+1==v.size()?"": " ");
    }
    return os;
}
template<typename T,typename U>
ostream &operator<<(ostream &os,const pair<T,U> &p){
    os << '(' << p.first << ',' << p.second << ')';
    return os;
}
template<typename T,typename U,typename V>
ostream&operator<<(ostream &os,const tuple<T,U,V> &t){
    os << '(' << get<0>(t) << ',' << get<1>(t) << ',' << get<2>(t) << ')';
    return os;
}
template<typename T,typename U,typename V,typename W>
ostream&operator<<(ostream &os,const tuple<T,U,V,W> &t){
    os << '(' << get<0>(t) << ',' << get<1>(t) << ',' << get<2>(t) << ',' << get<3>(t) << ')';
    return os;
}
template<typename T,typename U>
ostream &operator<<(ostream &os,const map<T,U> &m){
    os << '{';
    for (auto itr=m.begin();itr!=m.end();){
        os << '(' << itr->first << ',' << itr->second << ')';
        if (++itr!=m.end()) os << ',';
    }
    os << '}';
    return os;
}
template<typename T,typename U>
ostream &operator<<(ostream &os,const unordered_map<T,U> &m){
    os << '{';
    for (auto itr=m.begin();itr!=m.end();){
        os << '(' << itr->first << ',' << itr->second << ')';
        if (++itr!=m.end()) os << ',';
    }
    os << '}';
    return os;
}
template<typename T>
ostream &operator<<(ostream &os,const set<T> &s){
    os << '{';
    for (auto itr=s.begin();itr!=s.end();){
        os << *itr;
        if (++itr!=s.end()) os << ',';
    }
    os << '}';
    return os;
}
template<typename T>
ostream &operator<<(ostream &os,const multiset<T> &s){
    os << '{';
    for (auto itr=s.begin();itr!=s.end();){
        os << *itr;
        if (++itr!=s.end()) os << ',';
    }
    os << '}';
    return os;
}
template<typename T>
ostream &operator<<(ostream &os,const unordered_set<T> &s){
    os << '{';
    for (auto itr=s.begin();itr!=s.end();){
        os << *itr;
        if (++itr!=s.end()) os << ',';
    }
    os << '}';
    return os;
}
template<typename T>
ostream &operator<<(ostream &os,const deque<T> &v){
    for (int i=0;i<v.size();++i){
        os << v[i] << (i+1==v.size()?"": " ");
    }
    return os;
}

void debug_out(){cerr << '\n';}
template<class Head,class... Tail>
void debug_out(Head&& head,Tail&&... tail){
    cerr << head;
    if (sizeof...(Tail)>0) cerr << ", ";
    debug_out(move(tail)...);
}
#ifdef LOCAL
#define debug(...) cerr << " ";\
cerr << #__VA_ARGS__ << " :[" << __LINE__ << ":" << __FUNCTION__ << "]" << '\n';\
cerr << " ";\
debug_out(__VA_ARGS__)
#else
#define debug(...) 42
#endif

template<typename T> T gcd(T x,T y){return y!=0?gcd(y,x%y):x;}
template<typename T> T lcm(T x,T y){return x/gcd(x,y)*y;}

template<class T1,class T2> inline bool chmin(T1 &a,T2 b){
    if (a>b){a=b; return true;} return false;
}
template<class T1,class T2> inline bool chmax(T1 &a,T2 b){
    if (a<b){a=b; return true;} return false;
}
#pragma endregion

template<uint32_t mod> class modint{
    using i64=int64_t;
    using u32=uint32_t;
    using u64=uint64_t;
public:
    u32 v;
    constexpr modint(const i64 x=0) noexcept :v(x<0?mod-1-(-(x+1)%mod):x%mod){}
    constexpr u32 &value() noexcept {return v;}
    constexpr const u32 &value() const noexcept {return v;}
    constexpr modint operator+(const modint &rhs) const noexcept {return modint(*this)+=rhs;}
    constexpr modint operator-(const modint &rhs) const noexcept {return modint(*this)-=rhs;}
    constexpr modint operator*(const modint &rhs) const noexcept {return modint(*this)*=rhs;}
    constexpr modint operator/(const modint &rhs) const noexcept {return modint(*this)/=rhs;}
    constexpr modint &operator+=(const modint &rhs) noexcept {
        v+=rhs.v;
        if (v>=mod) v-=mod;
        return *this;
    }
    constexpr modint &operator-=(const modint &rhs) noexcept {
        if (v<rhs.v) v+=mod;
        v-=rhs.v;
        return *this;
    }
    constexpr modint &operator*=(const modint &rhs) noexcept {
        v=(u64)v*rhs.v%mod;
        return *this;
    }
    constexpr modint &operator/=(const modint &rhs) noexcept {
        return *this*=rhs.pow(mod-2);
    }
    constexpr modint pow(u64 exp) const noexcept {
        modint self(*this),res(1);
        while (exp>0){
            if (exp&1) res*=self;
            self*=self; exp>>=1;
        }
        return res;
    }
    constexpr modint &operator++() noexcept {if (++v==mod) v=0; return *this;}
    constexpr modint &operator--() noexcept {if (v==0) v=mod; return --v,*this;}
    constexpr modint operator++(int) noexcept {modint t=*this; return ++*this,t;}
    constexpr modint operator--(int) noexcept {modint t=*this; return --*this,t;}
    constexpr modint operator-() const noexcept {return modint(mod-v);}
    template<class T> friend constexpr modint operator+(T x,modint y) noexcept {return modint(x)+y;}
    template<class T> friend constexpr modint operator-(T x,modint y) noexcept {return modint(x)-y;}
    template<class T> friend constexpr modint operator*(T x,modint y) noexcept {return modint(x)*y;}
    template<class T> friend constexpr modint operator/(T x,modint y) noexcept {return modint(x)/y;}
    constexpr bool operator==(const modint &rhs) const noexcept {return v==rhs.v;}
    constexpr bool operator!=(const modint &rhs) const noexcept {return v!=rhs.v;}
    constexpr bool operator!() const noexcept {return !v;}
    friend istream &operator>>(istream &s,modint &rhs) noexcept {
        i64 v; rhs=modint{(s>>v,v)}; return s;
    }
    friend ostream &operator<<(ostream &s,const modint &rhs) noexcept {
        return s<<rhs.v;
    }
};

template<int mod>
struct NumberTheoreticTransform{
    using Mint=modint<mod>;
    vector<Mint> roots;
    vector<int> rev;
    int base,max_base;
    Mint root;
    NumberTheoreticTransform():base(1),rev{0,1},roots{Mint(0),Mint(1)}{
        int tmp=mod-1;
        for (max_base=0;tmp%2==0;++max_base) tmp>>=1;
        root=2;
        while (root.pow((mod-1)>>1)==1) ++root;
        root=root.pow((mod-1)>>max_base);
    }
    void ensure_base(int nbase){
        if (nbase<=base) return;
        rev.resize(1<<nbase);
        for (int i=0;i<(1<<nbase);++i){
            rev[i]=(rev[i>>1]>>1)|((i&1)<<(nbase-1));
        }
        roots.resize(1<<nbase);
        for (;base<nbase;++base){
            Mint z=root.pow(1<<(max_base-1-base));
            for (int i=1<<(base-1);i<(1<<base);++i){
                roots[i<<1]=roots[i];
                roots[i<<1|1]=roots[i]*z;
            }
        }
    }
    void ntt(vector<Mint> &a){
        const int n=a.size();
        int zeros=__builtin_ctz(n);
        ensure_base(zeros);
        int shift=base-zeros;
        for (int i=0;i<n;++i){
            if (i<(rev[i]>>shift)){
                swap(a[i],a[rev[i]>>shift]);
            }
        }
        for (int k=1;k<n;k<<=1){
            for (int i=0;i<n;i+=(k<<1)){
                for (int j=0;j<k;++j){
                    Mint z=a[i+j+k]*roots[j+k];
                    a[i+j+k]=a[i+j]-z;
                    a[i+j]=a[i+j]+z;
                }
            }
        }
    }
    vector<Mint> multiply(vector<Mint> a,vector<Mint> b){
        int need=a.size()+b.size()-1;
        int nbase=1;
        while ((1<<nbase)<need) ++nbase;
        ensure_base(nbase);
        int sz=1<<nbase;
        a.resize(sz,Mint(0)); b.resize(sz,Mint(0));
        ntt(a); ntt(b);
        Mint inv_sz=1/Mint(sz);
        for (int i=0;i<sz;++i) a[i]*=b[i]*inv_sz;
        reverse(a.begin()+1,a.end());
        ntt(a);
        a.resize(need);
        return a;
    }
    vector<int> multiply(vector<int> a,vector<int> b){
        vector<Mint> A(a.size()),B(b.size());
        for (int i=0;i<a.size();++i) A[i]=Mint(a[i]);
        for (int i=0;i<b.size();++i) B[i]=Mint(b[i]);
        vector<Mint> C=multiply(A,B);
        vector<int> res(C.size());
        for (int i=0;i<C.size();++i) res[i]=C[i].v;
        return res;
    }
};

template<typename M>
struct FormalPowerSeries:vector<M>{
    using vector<M>::vector;
    using Poly=FormalPowerSeries;
    using MUL=function<Poly(Poly,Poly)>;
    static MUL &get_mul(){static MUL mul=nullptr; return mul;}
    static void set_mul(MUL f){get_mul()=f;}
    void shrink(){
        while (this->size()&&this->back()==M(0)) this->pop_back();
    }
    Poly pre(int deg) const {return Poly(this->begin(),this->begin()+min((int)this->size(),deg));}
    Poly operator+(const M &v) const {return Poly(*this)+=v;}
    Poly operator+(const Poly &p) const {return Poly(*this)+=p;}
    Poly operator-(const M &v) const {return Poly(*this)-=v;}
    Poly operator-(const Poly &p) const {return Poly(*this)-=p;}
    Poly operator*(const M &v) const {return Poly(*this)*=v;}
    Poly operator*(const Poly &p) const {return Poly(*this)*=p;}
    Poly operator/(const Poly &p) const {return Poly(*this)/=p;}
    Poly operator%(const Poly &p) const {return Poly(*this)%=p;}
    Poly &operator+=(const M &v){
        if (this->empty()) this->resize(1);
        (*this)[0]+=v;
        return *this;
    }
    Poly &operator+=(const Poly &p){
        if (p.size()>this->size()) this->resize(p.size());
        for (int i=0;i<p.size();++i) (*this)[i]+=p[i];
        return *this;
    }
    Poly &operator-=(const M &v){
        if (this->empty()) this->resize(1);
        (*this)[0]-=v;
        return *this;
    }
    Poly &operator-=(const Poly &p){
        if (p.size()>this->size()) this->resize(p.size());
        for (int i=0;i<p.size();++i) (*this)[i]-=p[i];
        return *this;
    }
    Poly &operator*=(const M &v){
        for (int i=0;i<this->size();++i) (*this)[i]*=v;
        return *this;
    }
    Poly &operator*=(const Poly &p){
        if (this->empty()||p.empty()){
            this->clear();
            return *this;
        }
        assert(get_mul()!=nullptr);
        return *this=get_mul()(*this,p);
    }
    Poly &operator/=(const Poly &p){
        if (this->size()<p.size()){
            this->clear();
            return *this;
        }
        int n=this->size()-p.size()-1;
        return *this=(rev().pre(n)*p.rev().inv(n)).pre(n).rev(n);
    }
    Poly &operator%=(const Poly &p){return *this-=*this/p*p;}
    Poly operator<<(const int deg){
        Poly res(*this);
        res.insert(res.begin(),deg,M(0));
        return res;
    }
    Poly operator>>(const int deg){
        if (this->size()<=deg) return {};
        Poly res(*this);
        res.erase(res.begin(),res.begin()+deg);
        return res;
    }
    Poly operator-() const {
        Poly res(this->size());
        for (int i=0;i<this->size();++i) res[i]=-(*this)[i];
        return res;
    }
    Poly rev(int deg=-1) const {
        Poly res(*this);
        if (~deg) res.resize(deg,M(0));
        reverse(res.begin(),res.end());
        return res;
    }
    Poly diff() const {
        Poly res(max(0,(int)this->size()-1));
        for (int i=1;i<this->size();++i) res[i-1]=(*this)[i]*M(i);
        return res;
    }
    Poly integral() const {
        Poly res(this->size()+1);
        res[0]=M(0);
        for (int i=0;i<this->size();++i) res[i+1]=(*this)[i]/M(i+1);
        return res;
    }
    Poly inv(int deg=-1) const {
        assert((*this)[0]!=M(0));
        if (deg<0) deg=this->size();
        Poly res({M(1)/(*this)[0]});
        for (int i=1;i<deg;i<<=1){
            res=(res+res-res*res*pre(i<<1)).pre(i<<1);
        }
        return res.pre(deg);
    }
    Poly log(int deg=-1) const {
        assert((*this)[0]==M(1));
        if (deg<0) deg=this->size();
        return (this->diff()*this->inv(deg)).pre(deg-1).integral();
    }
    Poly sqrt(int deg=-1) const {
        assert((*this)[0]==M(1));
        if (deg==-1) deg=this->size();
        Poly res({M(1)});
        M inv2=M(1)/M(2);
        for (int i=1;i<deg;i<<=1){
            res=(res+pre(i<<1)*res.inv(i<<1))*inv2;
        }
        return res.pre(deg);
    }
    Poly exp(int deg=-1){
        assert((*this)[0]==M(0));
        if (deg<0) deg=this->size();
        Poly res({M(1)});
        for (int i=1;i<deg;i<<=1){
            res=(res*(pre(i<<1)+M(1)-res.log(i<<1))).pre(i<<1);
        }
        return res.pre(deg);
    }
    Poly pow(long long k,int deg=-1) const {
        if (deg<0) deg=this->size();
        for (int i=0;i<this->size();++i){
            if ((*this)[i]==M(0)) continue;
            if (k*i>deg) return Poly(deg,M(0));
            M inv=M(1)/(*this)[i];
            Poly res=(((*this*inv)>>i).log()*k).exp()*(*this)[i].pow(k);
            res=(res<<(i*k)).pre(deg);
            if (res.size()<deg) res.resize(deg,M(0));
            return res;
        }
        return *this;
    }
    Poly pow_mod(long long k,const Poly &mod) const {
        Poly x(*this),res={M(1)};
        while (k>0){
            if (k&1) res=res*x%mod;
            x=x*x%mod; k>>=1;
        }
        return res;
    }
    Poly linear_mul(const M &a,const M &b){
        Poly res(this->size()+1);
        for (int i=0;i<this->size()+1;++i){
            res[i]=(i-1>=0?(*this)[i-1]*a:M(0))+(i<this->size()?(*this)[i]*b:M(0));
        }
        return res;
    }
    Poly linear_div(const M &a,const M &b){
        Poly res(this->size()-1);
        M inv_b=M(1)/b;
        for (int i=0;i+1<this->size();++i){
            res[i]=((*this)[i]-(i-1>=0?res[i-1]*a:M(0)))*inv_b;
        }
        return res;
    }
    Poly sparse_mul(const M &c,const M &d){
        Poly res(*this);
        res.resize(this->size()+d,M(0));
        for (int i=0;i<this->size();++i){
            res[i+d]+=(*this)[i]*c;
        }
        return res;
    }
    Poly sparse_div(const M &c,const M &d){
        Poly res(*this);
        for (int i=0;i<res.size()-d;++i){
            res[i+d]-=res[i]*c;
        }
        return res;
    }
    M operator()(const M &x) const {
        M res=0,power=1;
        for (int i=0;i<this->size();++i,power*=x){
            res+=(*this)[i]*power;
        }
        return res;
    }
};

template<class M>
struct Combination{
    vector<M> _fac,_inv,_finv;
    Combination(int n):_fac(n+1),_inv(n+1),_finv(n+1){
        _fac[0]=_finv[n]=_inv[0]=1;
        for (int i=1;i<=n;++i) _fac[i]=_fac[i-1]*i;
        _finv[n]/=_fac[n];
        for (int i=n-1;i>=0;--i) _finv[i]=_finv[i+1]*(i+1);
        for (int i=1;i<=n;++i) _inv[i]=_finv[i]*_fac[i-1];
    }
    M fac(int k) const {return _fac[k];}
    M finv(int k) const {return _finv[k];}
    M inv(int k) const {return _inv[k];}
    M P(int n,int r) const {
        if (n<0||r<0||n<r) return 0;
        return _fac[n]*_finv[n-r];
    }
    M C(int n,int r) const {
        if (n<0||r<0||n<r) return 0;
        return _fac[n]*_finv[r]*_finv[n-r];
    }
};

using mint=modint<998244353>;
using FPS=FormalPowerSeries<mint>;

int main(){
    cin.tie(0);
    ios::sync_with_stdio(false);
    Combination<mint> COM(100010);
    NumberTheoreticTransform<998244353> NTT;
    auto mul=[&](const FPS::Poly &a,const FPS::Poly &b){
        auto res=NTT.multiply(a,b);
        return FPS::Poly(res.begin(),res.end());
    };
    FPS::set_mul(mul);

    int N; cin >> N;
    FPS a(N);
    for (int i=0;i<N;++i) a[i]=(i+1)*COM.finv(i);
    mint ans=a.pow(N)[N-2]*COM.fac(N-2)/mint(N).pow(N-2);
    cout << ans << '\n';
}
0