結果
問題 | No.1301 Strange Graph Shortest Path |
ユーザー | 👑 obakyan |
提出日時 | 2020-11-28 14:21:44 |
言語 | Lua (LuaJit 2.1.1734355927) |
結果 |
TLE
|
実行時間 | - |
コード長 | 7,569 bytes |
コンパイル時間 | 256 ms |
コンパイル使用メモリ | 7,072 KB |
実行使用メモリ | 74,240 KB |
最終ジャッジ日時 | 2024-09-12 22:26:04 |
合計ジャッジ時間 | 25,463 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
13,760 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 604 ms
53,760 KB |
testcase_03 | AC | 499 ms
44,800 KB |
testcase_04 | AC | 743 ms
71,368 KB |
testcase_05 | AC | 517 ms
46,720 KB |
testcase_06 | AC | 721 ms
64,804 KB |
testcase_07 | AC | 596 ms
55,552 KB |
testcase_08 | AC | 487 ms
45,056 KB |
testcase_09 | AC | 646 ms
62,848 KB |
testcase_10 | AC | 499 ms
45,568 KB |
testcase_11 | AC | 654 ms
64,128 KB |
testcase_12 | AC | 678 ms
65,768 KB |
testcase_13 | AC | 595 ms
54,144 KB |
testcase_14 | AC | 592 ms
56,064 KB |
testcase_15 | AC | 620 ms
54,972 KB |
testcase_16 | AC | 717 ms
72,064 KB |
testcase_17 | AC | 630 ms
57,088 KB |
testcase_18 | AC | 582 ms
52,224 KB |
testcase_19 | AC | 685 ms
65,536 KB |
testcase_20 | AC | 689 ms
68,224 KB |
testcase_21 | AC | 631 ms
56,832 KB |
testcase_22 | AC | 636 ms
70,256 KB |
testcase_23 | AC | 650 ms
55,296 KB |
testcase_24 | AC | 661 ms
67,068 KB |
testcase_25 | AC | 741 ms
68,352 KB |
testcase_26 | AC | 626 ms
57,088 KB |
testcase_27 | AC | 657 ms
59,392 KB |
testcase_28 | AC | 527 ms
47,616 KB |
testcase_29 | AC | 735 ms
74,240 KB |
testcase_30 | AC | 722 ms
66,560 KB |
testcase_31 | AC | 717 ms
68,864 KB |
testcase_32 | AC | 2 ms
6,940 KB |
testcase_33 | AC | 323 ms
51,712 KB |
testcase_34 | TLE | - |
ソースコード
local mmi, mma = math.min, math.max local MinCostFlow = {} MinCostFlow.initialize = function(self, n, spos, tpos, inf) self.n = n self.spos, self.tpos = spos, tpos self.inf = inf -- edge_dst[src][i] := dst self.edge_dst = {} -- edge_cost[src][i] := cost from src to edge_dst[src][i] self.edge_cost = {} -- edge_cap[src][i] := capacity from src to edge_dst[src][i] self.edge_cap = {} -- edge_dst_invedge_idx[src][i] := "j" where edge_dst[dst][j] == src -- in this case, edge_dst_invedge_idx[dst][j] should be "i". self.edge_dst_invedge_idx = {} -- len[v] := length from spos. len[spos] := 0 self.len = {} -- sub_graph_flag[v] := temporal flag to restore shortest path self.sub_graph_flag = {} -- sub_graph_v[i] := list of vertexes that are contained in the sub-graph. from tpos to spos. self.sub_graph_v = {} -- sub_graph_edgeidx[i] := edge index from sub_graph_v[i + 1] to sub_graph_v[i] self.sub_graph_edgeidx = {} -- sub_graph_size := the size of sub_graph_v. -- may not equal to #sub_graph_v (because not cleared). self.sub_graph_size = 0 for i = 1, n do self.edge_dst[i] = {} self.edge_cost[i] = {} self.edge_cap[i] = {} self.edge_dst_invedge_idx[i] = {} self.len[i] = 0 self.sub_graph_flag[i] = false end end MinCostFlow.addEdge = function(self, src, dst, cost, cap) table.insert(self.edge_dst[src], dst) table.insert(self.edge_cost[src], cost) table.insert(self.edge_cap[src], cap) table.insert(self.edge_dst_invedge_idx[src], 1 + #self.edge_dst[dst]) table.insert(self.edge_dst[dst], src) table.insert(self.edge_cost[dst], -cost) table.insert(self.edge_cap[dst], 0)--invcap table.insert(self.edge_dst_invedge_idx[dst], #self.edge_dst[src]) end MinCostFlow.invwalk_recursive = function(self) local edge_cap, edge_cost = self.edge_cap, self.edge_cost local len = self.len local sub_graph_flag = self.sub_graph_flag local sub_graph_v = self.sub_graph_v local sub_graph_edgeidx = self.sub_graph_edgeidx local searched_cnt = {0} while true do local invsrc = sub_graph_v[self.sub_graph_size] if invsrc == self.spos then break end local eddsrc = self.edge_dst[invsrc] local eddiisrc = self.edge_dst_invedge_idx[invsrc] local i = searched_cnt[self.sub_graph_size] if i < #eddsrc then i = i + 1 searched_cnt[self.sub_graph_size] = i local invdst = eddsrc[i] local j = eddiisrc[i] if 0 < edge_cap[invdst][j] and len[invdst] + edge_cost[invdst][j] == len[invsrc] and not sub_graph_flag[invdst] then self.sub_graph_size = self.sub_graph_size + 1 sub_graph_v[self.sub_graph_size] = invdst sub_graph_edgeidx[self.sub_graph_size - 1] = j sub_graph_flag[invdst] = true searched_cnt[self.sub_graph_size] = 0 end else self.sub_graph_size = self.sub_graph_size - 1 end end end MinCostFlow.walkDK = function(self) -- Dijkstra-like walk local edge_dst, edge_cost, edge_cap = self.edge_dst, self.edge_cost, self.edge_cap local len = self.len local tasklim = self.n if not self.taskstate then self.taskstate = {} self.tasks = {} for i = 1, tasklim do self.taskstate[i] = false end end local taskstate = self.taskstate local tasks = self.tasks local tasknum, done = 0, 0 local function addtask(idx) if not taskstate[idx] and idx ~= self.tpos then taskstate[idx] = true tasknum = tasknum + 1 local taskidx = tasknum % tasklim if taskidx == 0 then taskidx = tasklim end tasks[taskidx] = idx end end local function walk(src, dst, cost) if len[src] + cost < len[dst] then len[dst] = len[src] + cost addtask(dst) end end addtask(self.spos) while done < tasknum do done = done + 1 local taskidx = done % tasklim if taskidx == 0 then taskidx = tasklim end local idx = tasks[taskidx] taskstate[idx] = false local eddst, edcap, edcost = edge_dst[idx], edge_cap[idx], edge_cost[idx] for i = 1, #eddst do if 0 < edcap[i] then walk(idx, eddst[i], edcost[i]) end end end end MinCostFlow.walkBF = function(self) --Bellman-Ford walk local edge_dst, edge_cost, edge_cap = self.edge_dst, self.edge_cost, self.edge_cap local len = self.len local n = self.n if not self.updated1 then self.updated1 = {} self.updated2 = {} end local updated1, updated2 = self.updated1, self.updated2 for i = 1, n do updated1[i] = false end updated1[self.spos] = true len[self.spos] = 0 for irp = 1, n do local updsrc = irp % 2 == 1 and updated1 or updated2 local upddst = irp % 2 == 1 and updated2 or updated1 for i = 1, n do upddst[i] = false end local alldone = true for src = 1, n do if updsrc[src] then local eddst, edcap, edcost = edge_dst[src], edge_cap[src], edge_cost[src] for i = 1, #eddst do if 0 < edcap[i] then local dst = eddst[i] local cost = edcost[i] if len[src] + cost < len[dst] then len[dst] = len[src] + cost upddst[dst] = true alldone = false end end end end end if alldone then break end end end MinCostFlow.makeSubGraph = function(self) local inf = self.inf local len = self.len local n = self.n local edge_dst, edge_cap = self.edge_dst, self.edge_cap local edge_dst_invedge_idx = self.edge_dst_invedge_idx local edge_cost = self.edge_cost local sub_graph_v = self.sub_graph_v local sub_graph_edgeidx = self.sub_graph_edgeidx local sub_graph_flag = self.sub_graph_flag for i = 1, n do len[i] = inf sub_graph_flag[i] = false end len[self.spos] = 0 -- Bellman-Ford is good, but Dijkstra-like is very fast in some case self:walkDK() -- self:walkBF() self.sub_graph_size = 0 if inf <= len[self.tpos] then return 0 end -- restore route (from tpos to spos) self.sub_graph_size = 1 sub_graph_v[1] = self.tpos self:invwalk_recursive(self.tpos) local min_capacity = inf for i = self.sub_graph_size, 2, -1 do local src = sub_graph_v[i] local j = sub_graph_edgeidx[i - 1] min_capacity = mmi(min_capacity, edge_cap[src][j]) end return min_capacity end MinCostFlow.flow = function(self, capacity) local edge_dst, edge_cap = self.edge_dst, self.edge_cap local edge_dst_invedge_idx = self.edge_dst_invedge_idx local sub_graph_v = self.sub_graph_v local sub_graph_edgeidx = self.sub_graph_edgeidx for i = self.sub_graph_size, 2, -1 do local src = sub_graph_v[i] local dst = sub_graph_v[i - 1] local j = sub_graph_edgeidx[i - 1] edge_cap[src][j] = edge_cap[src][j] - capacity local k = edge_dst_invedge_idx[src][j] edge_cap[dst][k] = edge_cap[dst][k] + capacity end end MinCostFlow.getMinCostFlow = function(self, amount, invalid) local ret = 0 local cap = self:makeSubGraph() while 0 < cap do cap = mmi(amount, cap) ret = ret + self.len[self.tpos] * cap self:flow(cap) amount = amount - cap if 0 < amount then cap = self:makeSubGraph() else break end end if 0 < amount then return invalid end return ret end local mcf = MinCostFlow local n = io.read("*n") local m = io.read("*n") mcf:initialize(n, 1, n, 1000000007 * 100000) for i = 1, m do local u, v, c, d = io.read("*n", "*n", "*n", "*n") mcf:addEdge(u, v, c, 1) mcf:addEdge(v, u, c, 1) mcf:addEdge(u, v, d, 1) mcf:addEdge(v, u, d, 1) end print(mcf:getMinCostFlow(2))