結果

問題 No.1301 Strange Graph Shortest Path
ユーザー kjnh10kjnh10
提出日時 2020-11-28 20:45:24
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 194 ms / 3,000 ms
コード長 8,381 bytes
コンパイル時間 2,553 ms
コンパイル使用メモリ 223,340 KB
実行使用メモリ 36,508 KB
最終ジャッジ日時 2024-09-13 01:38:05
合計ジャッジ時間 9,041 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 143 ms
36,508 KB
testcase_03 AC 116 ms
32,084 KB
testcase_04 AC 177 ms
34,596 KB
testcase_05 AC 127 ms
35,444 KB
testcase_06 AC 169 ms
32,420 KB
testcase_07 AC 149 ms
34,336 KB
testcase_08 AC 121 ms
32,536 KB
testcase_09 AC 128 ms
30,900 KB
testcase_10 AC 120 ms
32,140 KB
testcase_11 AC 151 ms
33,428 KB
testcase_12 AC 153 ms
33,376 KB
testcase_13 AC 134 ms
35,600 KB
testcase_14 AC 156 ms
30,800 KB
testcase_15 AC 128 ms
31,868 KB
testcase_16 AC 169 ms
34,736 KB
testcase_17 AC 156 ms
36,372 KB
testcase_18 AC 149 ms
33,124 KB
testcase_19 AC 136 ms
32,560 KB
testcase_20 AC 161 ms
32,048 KB
testcase_21 AC 155 ms
35,024 KB
testcase_22 AC 182 ms
32,340 KB
testcase_23 AC 142 ms
35,832 KB
testcase_24 AC 166 ms
32,424 KB
testcase_25 AC 166 ms
34,904 KB
testcase_26 AC 147 ms
33,428 KB
testcase_27 AC 138 ms
33,484 KB
testcase_28 AC 127 ms
35,520 KB
testcase_29 AC 194 ms
34,044 KB
testcase_30 AC 146 ms
34,568 KB
testcase_31 AC 159 ms
34,296 KB
testcase_32 AC 2 ms
6,944 KB
testcase_33 AC 97 ms
29,916 KB
testcase_34 AC 147 ms
36,412 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "header.hpp"

//%snippet.set('header')%
//%snippet.fold()%
#ifndef HEADER_H
#define HEADER_H

// template version 2.0
using namespace std;
#include <bits/stdc++.h>

// varibable settings
template <class T> constexpr T inf = numeric_limits<T>::max() / 2.1;

#define _overload3(_1, _2, _3, name, ...) name
#define _rep(i, n) repi(i, 0, n)
#define repi(i, a, b) for (ll i = (ll)(a); i < (ll)(b); ++i)
#define rep(...) _overload3(__VA_ARGS__, repi, _rep, )(__VA_ARGS__)
#define _rrep(i, n) rrepi(i, 0, n)
#define rrepi(i, a, b) for (ll i = (ll)((b)-1); i >= (ll)(a); --i)
#define r_rep(...) _overload3(__VA_ARGS__, rrepi, _rrep, )(__VA_ARGS__)
#define each(i, a) for (auto &&i : a)
#define all(x) (x).begin(), (x).end()
#define sz(x) ((int)(x).size())
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define mt(...) make_tuple(__VA_ARGS__)
#define ub upper_bound
#define lb lower_bound
#define lpos(A, x) (lower_bound(all(A), x) - A.begin())
#define upos(A, x) (upper_bound(all(A), x) - A.begin())
template <class T, class U> inline void chmax(T &a, const U &b) { if ((a) < (b)) (a) = (b); }
template <class T, class U> inline void chmin(T &a, const U &b) { if ((a) > (b)) (a) = (b); }
template <typename X, typename T> auto make_table(X x, T a) { return vector<T>(x, a); }
template <typename X, typename Y, typename Z, typename... Zs> auto make_table(X x, Y y, Z z, Zs... zs) { auto cont = make_table(y, z, zs...); return vector<decltype(cont)>(x, cont); }

template <class T> T cdiv(T a, T b){ assert(a >= 0 && b > 0); return (a+b-1)/b; }

#define is_in(x, a, b) ((a) <= (x) && (x) < (b))
#define uni(x) sort(all(x)); x.erase(unique(all(x)), x.end())
#define slice(l, r) substr(l, r - l)

typedef long long ll;
typedef long double ld;
using vl = vector<ll>;
using vvl = vector<vl>;
using pll = pair<ll, ll>;

template <typename T>
using PQ = priority_queue<T, vector<T>, greater<T>>;
void check_input() { assert(cin.eof() == 0); int tmp; cin >> tmp; assert(cin.eof() == 1); }

#if defined(PCM) || defined(LOCAL)
#else
#define dump(...) ;
#define dump_1d(...) ;
#define dump_2d(...) ;
#define cerrendl ;
#endif

#endif /* HEADER_H */
//%snippet.end()%
#line 2 "solve.cpp"
template<class T=ll> using vec = vector<T>;
struct Fast { Fast() { std::cin.tie(0); ios::sync_with_stdio(false); } } fast;

#line 1 "/home/koji0708/go/src/github.com/kjnh10/pcm/pcm/lang_library/cplusplus/ac-library/atcoder/mincostflow.hpp"



#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>

namespace atcoder {

template <class Cap, class Cost> struct mcf_graph {
  public:
    mcf_graph() {}
    mcf_graph(int n) : _n(n), g(n) {}

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        assert(0 <= cost);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        int from_id = int(g[from].size());
        int to_id = int(g[to].size());
        if (from == to) to_id++;
        g[from].push_back(_edge{to, to_id, cap, cost});
        g[to].push_back(_edge{from, from_id, 0, -cost});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{
            pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
        };
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result(m);
        for (int i = 0; i < m; i++) {
            result[i] = get_edge(i);
        }
        return result;
    }

    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
        std::vector<Cost> dual(_n, 0), dist(_n);
        std::vector<int> pv(_n), pe(_n);
        std::vector<bool> vis(_n);
        struct Q {
            Cost key;
            int to;
            bool operator<(Q r) const { return key > r.key; }
        };
        std::vector<Q> que;
        auto dual_ref = [&]() {
            std::fill(dist.begin(), dist.end(),
                      std::numeric_limits<Cost>::max());
            std::fill(vis.begin(), vis.end(), false);
            que.clear();

            dist[s] = 0;
            que.push_back(Q{0, s});
            std::push_heap(que.begin(), que.end());
            while (!que.empty()) {
                int v = que.front().to;
                std::pop_heap(que.begin(), que.end());
                que.pop_back();
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                for (int i = 0; i < int(g[v].size()); i++) {
                    auto e = g[v][i];
                    if (vis[e.to] || !e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual[e.to] + dual[v];
                    if (dist[e.to] - dist[v] > cost) {
                        dist[e.to] = dist[v] + cost;
                        pv[e.to] = v;
                        pe[e.to] = i;
                        que.push_back(Q{dist[e.to], e.to});
                        std::push_heap(que.begin(), que.end());
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
                //         = - shortest(s, t) + dual[t] + shortest(s, v)
                //         = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
                dual[v] -= dist[t] - dist[v];
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost_per_flow = -1;
        std::vector<std::pair<Cap, Cost>> result;
        result.push_back({flow, cost});
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = pv[v]) {
                c = std::min(c, g[pv[v]][pe[v]].cap);
            }
            for (int v = t; v != s; v = pv[v]) {
                auto& e = g[pv[v]][pe[v]];
                e.cap -= c;
                g[v][e.rev].cap += c;
            }
            Cost d = -dual[s];
            flow += c;
            cost += c * d;
            if (prev_cost_per_flow == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost_per_flow = d;
        }
        return result;
    }

  private:
    int _n;

    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder


#line 6 "solve.cpp"
using namespace atcoder;

int solve() {
    ll n,m;cin>>n>>m;
    mcf_graph<ll, ll> g(n);
    rep(i, m){
        ll u,v,c,d;cin>>u>>v>>c>>d;
        u--;v--;
        g.add_edge(u, v, 1, c);
        g.add_edge(u, v, 1, d);
        g.add_edge(v, u, 1, c);
        g.add_edge(v, u, 1, d);
    }
    auto res = g.flow(0, n-1, 2);
    cout << res.second << endl;

    return 0; 
}


int main(){/*{{{*/
    solve();

    #if defined(PCM) || defined(LOCAL)
    check_input();
    #endif

    return 0;
}/*}}}*/
0