結果
| 問題 | No.1301 Strange Graph Shortest Path | 
| コンテスト | |
| ユーザー |  torisasami4 | 
| 提出日時 | 2020-11-28 20:51:00 | 
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 541 ms / 3,000 ms | 
| コード長 | 9,341 bytes | 
| コンパイル時間 | 2,299 ms | 
| コンパイル使用メモリ | 192,764 KB | 
| 実行使用メモリ | 98,364 KB | 
| 最終ジャッジ日時 | 2024-09-13 01:38:55 | 
| 合計ジャッジ時間 | 19,310 ms | 
| ジャッジサーバーID (参考情報) | judge1 / judge4 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 2 | 
| other | AC * 33 | 
ソースコード
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pb(x) push_back(x)
#define mp(a, b) make_pair(a, b)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define lscan(x) scanf("%I64d", &x)
#define lprint(x) printf("%I64d", x)
#define rep(i, n) for (ll i = 0; i < (n); i++)
#define rep2(i, n) for (ll i = n - 1; i >= 0; i--)
template <class T>
using rque = priority_queue<T, vector<T>, greater<T>>;
const ll mod = 998244353;
ll gcd(ll a, ll b)
{
	ll c = a % b;
	while (c != 0)
	{
		a = b;
		b = c;
		c = a % b;
	}
	return b;
}
long long extGCD(long long a, long long b, long long &x, long long &y)
{
	if (b == 0)
	{
		x = 1;
		y = 0;
		return a;
	}
	long long d = extGCD(b, a % b, y, x);
	y -= a / b * x;
	return d;
}
struct UnionFind
{
	vector<ll> data;
	UnionFind(int sz)
	{
		data.assign(sz, -1);
	}
	bool unite(int x, int y)
	{
		x = find(x), y = find(y);
		if (x == y)
			return (false);
		if (data[x] > data[y])
			swap(x, y);
		data[x] += data[y];
		data[y] = x;
		return (true);
	}
	int find(int k)
	{
		if (data[k] < 0)
			return (k);
		return (data[k] = find(data[k]));
	}
	ll size(int k)
	{
		return (-data[find(k)]);
	}
};
ll M = 1000000007;
vector<ll> fac(2000011);  //n!(mod M)
vector<ll> ifac(2000011); //k!^{M-2} (mod M)
ll mpow(ll x, ll n)
{
	ll ans = 1;
	while (n != 0)
	{
		if (n & 1)
			ans = ans * x % M;
		x = x * x % M;
		n = n >> 1;
	}
	return ans;
}
ll mpow2(ll x, ll n, ll mod)
{
	ll ans = 1;
	while (n != 0)
	{
		if (n & 1)
			ans = ans * x % mod;
		x = x * x % mod;
		n = n >> 1;
	}
	return ans;
}
void setcomb()
{
	fac[0] = 1;
	ifac[0] = 1;
	for (ll i = 0; i < 2000010; i++)
	{
		fac[i + 1] = fac[i] * (i + 1) % M; // n!(mod M)
	}
	ifac[2000010] = mpow(fac[2000010], M - 2);
	for (ll i = 2000010; i > 0; i--)
	{
		ifac[i - 1] = ifac[i] * i % M;
	}
}
ll comb(ll a, ll b)
{
	if (a == 0 && b == 0)
		return 1;
	if (a < b || a < 0)
		return 0;
	ll tmp = ifac[a - b] * ifac[b] % M;
	return tmp * fac[a] % M;
}
ll perm(ll a, ll b)
{
	if (a == 0 && b == 0)
		return 1;
	if (a < b || a < 0)
		return 0;
	return fac[a] * ifac[a - b] % M;
}
long long modinv(long long a)
{
	long long b = M, u = 1, v = 0;
	while (b)
	{
		long long t = a / b;
		a -= t * b;
		swap(a, b);
		u -= t * v;
		swap(u, v);
	}
	u %= M;
	if (u < 0)
		u += M;
	return u;
}
ll modinv2(ll a, ll mod)
{
	ll b = mod, u = 1, v = 0;
	while (b)
	{
		ll t = a / b;
		a -= t * b;
		swap(a, b);
		u -= t * v;
		swap(u, v);
	}
	u %= mod;
	if (u < 0)
		u += mod;
	return u;
}
template <int mod>
struct ModInt
{
	int x;
	ModInt() : x(0) {}
	ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
	ModInt &operator+=(const ModInt &p)
	{
		if ((x += p.x) >= mod)
			x -= mod;
		return *this;
	}
	ModInt &operator-=(const ModInt &p)
	{
		if ((x += mod - p.x) >= mod)
			x -= mod;
		return *this;
	}
	ModInt &operator*=(const ModInt &p)
	{
		x = (int)(1LL * x * p.x % mod);
		return *this;
	}
	ModInt &operator/=(const ModInt &p)
	{
		*this *= p.inverse();
		return *this;
	}
	ModInt operator-() const { return ModInt(-x); }
	ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
	ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
	ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
	ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
	bool operator==(const ModInt &p) const { return x == p.x; }
	bool operator!=(const ModInt &p) const { return x != p.x; }
	ModInt inverse() const
	{
		int a = x, b = mod, u = 1, v = 0, t;
		while (b > 0)
		{
			t = a / b;
			swap(a -= t * b, b);
			swap(u -= t * v, v);
		}
		return ModInt(u);
	}
	ModInt pow(int64_t n) const
	{
		ModInt ret(1), mul(x);
		while (n > 0)
		{
			if (n & 1)
				ret *= mul;
			mul *= mul;
			n >>= 1;
		}
		return ret;
	}
	friend ostream &operator<<(ostream &os, const ModInt &p)
	{
		return os << p.x;
	}
	friend istream &operator>>(istream &is, ModInt &a)
	{
		int64_t t;
		is >> t;
		a = ModInt<mod>(t);
		return (is);
	}
	static int get_mod() { return mod; }
};
using mint = ModInt<mod>;
typedef vector<vector<mint>> Matrix;
Matrix mul(Matrix a, Matrix b)
{
	int i, j, k;
	mint t;
	int n = a.size(), m = b[0].size(), l = a[0].size();
	Matrix c(n, vector<mint>(m));
	for (i = 0; i < n; i++)
	{
		for (j = 0; j < m; j++)
		{
			t = 0;
			for (k = 0; k < l; k++)
				t += a[i][k] * b[k][j];
			c[i][j] = t;
		}
	}
	return c;
}
Matrix mat_pow(Matrix x, ll n)
{
	ll k = x.size();
	Matrix ans(k, vector<mint>(k, 0));
	for (int i = 0; i < k; i++)
		ans[i][i] = 1;
	while (n != 0)
	{
		if (n & 1)
			ans = mul(ans, x);
		x = mul(x, x);
		n = n >> 1;
	}
	return ans;
}
template <typename flow_t, typename cost_t>
struct PrimalDual
{
    const cost_t INF;
    bool neg_edge;
    struct edge
    {
        int to;
        flow_t cap;
        cost_t cost;
        int rev;
        bool isrev;
    };
    vector<vector<edge>> graph;
    vector<cost_t> potential, min_cost;
    vector<int> prevv, preve;
    PrimalDual(int V) : graph(V), INF(numeric_limits<cost_t>::max()), neg_edge(false) {}
    void add_edge(int from, int to, flow_t cap, cost_t cost)
    {
        graph[from].emplace_back((edge){to, cap, cost, (int)graph[to].size(), false});
        graph[to].emplace_back((edge){from, 0, -cost, (int)graph[from].size() - 1, true});
        if(cost < 0)
            neg_edge = true;
    }
    cost_t min_cost_flow(int s, int t, flow_t f)
    {
        int V = (int)graph.size();
        cost_t ret = 0;
        using Pi = pair<cost_t, int>;
        priority_queue<Pi, vector<Pi>, greater<Pi>> que;
        if(neg_edge){
            potential.assign(V, INF);
            potential[s] = 0;
            while (1)
            {
                bool update = false;
                for (int i = 0; i < V; i++)
                {
                    if (potential[i] != INF)
                    {
                        for (int j = 0; j < graph[i].size(); j++)
                        {
                            edge &e = graph[i][j];
                            cost_t nextCost = potential[i] + e.cost;
                            if (e.cap > 0 && potential[e.to] > nextCost)
                            {
                                potential[e.to] = nextCost;
                                update = true;
                            }
                        }
                    }
                }
                if (!update)
                    break;
            }
        }
        else
            potential.assign(V, 0);
        preve.assign(V, -1);
        prevv.assign(V, -1);
        while (f > 0)
        {
            min_cost.assign(V, INF);
            que.emplace(0, s);
            min_cost[s] = 0;
            while (!que.empty())
            {
                Pi p = que.top();
                que.pop();
                if (min_cost[p.second] < p.first)
                    continue;
                for (int i = 0; i < graph[p.second].size(); i++)
                {
                    edge &e = graph[p.second][i];
                    cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to];
                    if (e.cap > 0 && min_cost[e.to] > nextCost)
                    {
                        min_cost[e.to] = nextCost;
                        prevv[e.to] = p.second, preve[e.to] = i;
                        que.emplace(min_cost[e.to], e.to);
                    }
                }
            }
            if (min_cost[t] == INF)
                return -1;
            for (int v = 0; v < V; v++)
                potential[v] += min_cost[v];
            flow_t addflow = f;
            for (int v = t; v != s; v = prevv[v])
            {
                addflow = min(addflow, graph[prevv[v]][preve[v]].cap);
            }
            f -= addflow;
            ret += addflow * potential[t];
            for (int v = t; v != s; v = prevv[v])
            {
                edge &e = graph[prevv[v]][preve[v]];
                e.cap -= addflow;
                graph[v][e.rev].cap += addflow;
            }
        }
        return ret;
    }
    vector<pair<pair<int,int>,int>> get_edges()
    {
        vector<pair<pair<int, int>, int>> E;
        for (int i = 0; i < graph.size(); i++)
        {
            for (auto &e : graph[i])
            {
                if (e.isrev)
                    continue;
                auto &rev_e = graph[e.to][e.rev];
                E.push_back(mp(mp(i, e.to), rev_e.cap));
            }
        }
        return E;
    }
    void output()
    {
        for (int i = 0; i < graph.size(); i++)
        {
            for (auto &e : graph[i])
            {
                if (e.isrev)
                    continue;
                auto &rev_e = graph[e.to][e.rev];
                cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl;
            }
        }
    }
};
int main()
{
	ll n, m;
	cin >> n >> m;
	PrimalDual<ll, ll> mcf(n+m*2);
	ll u, v, c, d;
	rep(i, m){
		cin >> u >> v >> c >> d;
		u--, v--;
		mcf.add_edge(u, n + i, 2, 0);
		mcf.add_edge(v, n + i, 2, 0);
		mcf.add_edge(n + i, n + i + m, 1, c);
		mcf.add_edge(n + i, n + i + m, 1, d);
		mcf.add_edge(n + i + m, u, 2, 0);
		mcf.add_edge(n + i + m, v, 2, 0);
	}
	cout << mcf.min_cost_flow(0, n-1, 2) << endl;
}
            
            
            
        