結果
| 問題 |
No.1105 Many Triplets
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-11-29 14:11:16 |
| 言語 | Haskell (9.10.1) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 12,754 bytes |
| コンパイル時間 | 1,267 ms |
| コンパイル使用メモリ | 203,136 KB |
| 最終ジャッジ日時 | 2024-11-14 23:55:27 |
| 合計ジャッジ時間 | 1,890 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default
Main.hs:11:14: warning: [GHC-53692] [-Wdeprecated-flags]
-XTypeInType is deprecated: use -XDataKinds and -XPolyKinds instead
|
11 | {-# LANGUAGE TypeInType #-}
| ^^^^^^^^^^
[1 of 2] Compiling Main ( Main.hs, Main.o )
Main.hs:131:10: error: [GHC-88464]
Variable not in scope: lift :: ST s Int -> ContT () (ST s) Int
|
131 | c <- lift $ check b (-1) i
| ^^^^
Main.hs:134:9: error: [GHC-88464]
Variable not in scope: lift :: ST s () -> ContT () (ST s) a5
|
134 | lift $ writeSTRef retRef 0
| ^^^^
Main.hs:137:9: error: [GHC-88464]
Variable not in scope: when :: Bool -> a3 -> ContT () (ST s) a4
|
137 | when (c /= i) $ lift $ modifySTRef retRef (*(-1))
| ^^^^
Main.hs:137:25: error: [GHC-88464]
Variable not in scope: lift :: ST s () -> a3
|
137 | when (c /= i) $ lift $ modifySTRef retRef (*(-1))
| ^^^^
Main.hs:138:24: error: [GHC-88464]
Variable not in scope: lift :: m0 () -> ContT () (ST s) ()
|
138 | rep sz $ \j -> lift $ VUM.unsafeSwap b (c * sz + j) (i * sz + j)
| ^^^^
Main.hs:140:9: error: [GHC-88464]
Variable not in scope: lift :: ST s () -> ContT () (ST s) a2
|
140 | lift $ modifySTRef retRef (*itemii)
| ^^^^
Main.hs:154:9: error: [GHC-88464]
Variable not in scope:
when :: Bool -> ContT () (ST s) b2 -> ContT () (ST s) ()
|
154 | when (item /= 0) $ do
| ^^^^
Main.hs:155:11: error: [GHC-88464]
Variable not in scope: lift :: ST s () -> ContT () (ST s) a1
|
155 | lift $ writeSTRef pRef j
| ^^^^
ソースコード
{-# OPTIONS_GHC -mavx2 #-}
{-# OPTIONS_GHC -O3 #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeInType #-}
{-# LANGUAGE UnboxedTuples #-}
import Control.Monad.Cont
import Control.Monad.ST
import Data.Bits
import Data.Bool
import Data.Coerce
import Data.STRef.Strict
import qualified Data.Ratio as R
import GHC.Exts
import qualified Data.Vector.Fusion.Stream.Monadic as VFSM
import qualified Data.Vector.Generic as VG
import qualified Data.Vector.Generic.Mutable as VGM
import qualified Data.Vector.Unboxed as VU
import qualified Data.Vector.Unboxed.Mutable as VUM
main :: IO ()
main = do
n <- readLn :: IO Int
[a, b, c] <- map (read :: String -> Mint) . words <$> getLine
let
_x = buildMatrix $ VU.fromList [1, 1000000006, 0, 0, 1, 1000000006, 1000000006, 0, 1]
x = _x <|^|> (n - 1)
p = x VU.! 0 * a + x VU.! 1 * b + x VU.! 2 * c
q = x VU.! 3 * a + x VU.! 4 * b + x VU.! 5 * c
r = x VU.! 6 * a + x VU.! 7 * b + x VU.! 8 * c
putStr $ show p
putStr " "
putStr $ show q
putStr " "
print r
-------------------------------------------------------------------------------
-- square matrix
-------------------------------------------------------------------------------
type SquareMatrixMint = VU.Vector Mint
infixr 8 <|^|>
infixr 7 <|#|>
infixl 7 <|*|>
infixl 6 <|+|>, <|-|>
matO :: Int -> SquareMatrixMint
matO sz = VU.replicate sz (0 :: Mint)
{-# INLINE matO #-}
matE :: Int -> SquareMatrixMint
matE sz = VU.imap (\i _ -> bool 0 1 (i `mod` (sz + 1) == 0)) $ VU.replicate (sz * sz) (0 :: Mint)
{-# INLINE matE #-}
buildMatrix :: VU.Vector Int -> SquareMatrixMint
buildMatrix = VU.map mint
{-# INLINE buildMatrix #-}
(<|+|>) :: SquareMatrixMint -> SquareMatrixMint -> SquareMatrixMint
a <|+|> b = VU.zipWith (+) a b
{-# INLINE (<|+|>) #-}
(<|-|>) :: SquareMatrixMint -> SquareMatrixMint -> SquareMatrixMint
a <|-|> b = VU.zipWith (-) a b
{-# INLINE (<|-|>) #-}
(<|*|>) :: SquareMatrixMint -> SquareMatrixMint -> SquareMatrixMint
a <|*|> b = VU.create $ do
c <- VUM.unsafeNew m :: ST s (VUM.STVector s Mint)
rep sz $ \i -> rep sz $ \j -> rep sz $ \k -> VUM.unsafeModify c (+ (a VU.! (i * sz + k)) * (b VU.! (k * sz + j))) (i * sz + j)
return c
where
!m = VU.length a
!sz = floor . sqrt . fromIntegral $ m
(<|^|>) :: SquareMatrixMint -> Int -> SquareMatrixMint
a <|^|> n
| n == 1 = a
| n == 0 = matE sz
| even n = z <|*|> z
| otherwise = a <|*|> (z <|*|> z)
where
z = a <|^|> (n `div` 2)
!m = VU.length a
!sz = floor . sqrt . fromIntegral $ m
(<|#|>) :: Int -> SquareMatrixMint -> SquareMatrixMint
n <|#|> a = VU.map (* mint n) a
{-# INLINE (<|#|>) #-}
transposeMat :: SquareMatrixMint -> SquareMatrixMint
transposeMat a = VU.create $ do
let
!n = VU.length a
!sz = floor . sqrt . fromIntegral $ n
b <- VUM.unsafeNew n :: ST s (VUM.STVector s Mint)
rep sz $ \i -> rep sz $ \j -> do
VUM.unsafeWrite b (j * sz + i) (a VU.! (i * sz + j))
return b
takeNthRow :: Int -> SquareMatrixMint -> VU.Vector Mint
takeNthRow n a = VU.create $ do
let
!m = VU.length a
!sz = floor . sqrt . fromIntegral $ m
b <- VUM.unsafeNew sz :: ST s (VUM.STVector s Mint)
rep sz $ \i -> VUM.unsafeWrite b i (a VU.! ((n - 1) * sz + i))
return b
takeNthCol :: Int -> SquareMatrixMint -> VU.Vector Mint
takeNthCol n a = VU.create $ do
let
!m = VU.length a
!sz = floor . sqrt . fromIntegral $ m
b <- VUM.unsafeNew sz :: ST s (VUM.STVector s Mint)
rep sz $ \i -> VUM.unsafeWrite b i (a VU.! (i * sz + (n - 1)))
return b
determinant :: Int -> SquareMatrixMint -> Mint
determinant sz a = runST $ do
retRef <- newSTRef (1 :: Mint)
b <- VU.unsafeThaw a
withBreakST $ \break -> rep sz $ \i -> do
c <- lift $ check b (-1) i
if c == (-1)
then do
lift $ writeSTRef retRef 0
break ()
else do
when (c /= i) $ lift $ modifySTRef retRef (*(-1))
rep sz $ \j -> lift $ VUM.unsafeSwap b (c * sz + j) (i * sz + j)
itemii <- VUM.unsafeRead b (i * sz + i)
lift $ modifySTRef retRef (*itemii)
let inva = (1 :: Mint) / itemii
range (i + 1) (sz - 1) $ \j -> do
a0 <- VUM.unsafeRead b (j * sz + i)
range i (sz - 1) $ \k -> do
item <- VUM.unsafeRead b (i * sz + k)
VUM.unsafeModify b (subtract (inva * a0 * item)) (j * sz + k)
readSTRef retRef
where
check :: VUM.STVector s Mint -> Int -> Int -> ST s Int
check mvec ptr idx = do
pRef <- newSTRef ptr
withBreakST $ \break -> range idx (sz - 1) $ \j -> do
item <- VUM.unsafeRead mvec (j * sz + idx)
when (item /= 0) $ do
lift $ writeSTRef pRef j
break ()
readSTRef pRef
trace :: Int -> SquareMatrixMint -> Mint
trace n = VU.ifoldl' (\a i b -> if i `mod` (n + 1) == 0 then a + b else a) (0 :: Mint)
-------------------------------------------------------------------------------
-- mint
-------------------------------------------------------------------------------
#define MOD 1000000007
modulus :: Num a => a
modulus = MOD
{-# INLINE modulus #-}
infixr 8 ^%
infixl 7 *%, /%
infixl 6 +%, -%
(+%) :: Int -> Int -> Int
(I# x#) +% (I# y#) = case x# +# y# of
r# -> I# (r# -# ((r# >=# MOD#) *# MOD#))
{-# INLINE (+%) #-}
(-%) :: Int -> Int -> Int
(I# x#) -% (I# y#) = case x# -# y# of
r# -> I# (r# +# ((r# <# 0#) *# MOD#))
{-# INLINE (-%) #-}
(*%) :: Int -> Int -> Int
(I# x#) *% (I# y#) = case timesWord# (int2Word# x#) (int2Word# y#) of
z# -> case timesWord2# z# im# of
(# q#, _ #) -> case minusWord# z# (timesWord# q# m#) of
v# | isTrue# (geWord# v# m#) -> I# (word2Int# (plusWord# v# m#))
| otherwise -> I# (word2Int# v#)
where
m# = int2Word# MOD#
im# = plusWord# (quotWord# 0xffffffffffffffff## m#) 1##
{-# INLINE (*%) #-}
(/%) :: Int -> Int -> Int
(I# x#) /% (I# y#) = go# y# MOD# 1# 0#
where
go# a# b# u# v#
| isTrue# (b# ># 0#) = case a# `quotInt#` b# of
q# -> go# b# (a# -# (q# *# b#)) v# (u# -# (q# *# v#))
| otherwise = I# ((x# *# (u# +# MOD#)) `remInt#` MOD#)
{-# INLINE (/%) #-}
(^%) :: Int -> Int -> Int
x ^% n
| n > 0 = go 1 x n
| n == 0 = 1
| otherwise = go 1 (1 /% x) (-n)
where
go !acc !y !m
| m .&. 1 == 0 = go acc (y *% y) (unsafeShiftR m 1)
| m == 1 = acc *% y
| otherwise = go (acc *% y) (y *% y) (unsafeShiftR (m - 1) 1)
newtype Mint = Mint { getMint :: Int }
deriving newtype (Eq, Ord, Read, Show, Real)
mint :: Integral a => a -> Mint
mint x = fromIntegral $ mod (fromIntegral x) MOD
{-# INLINE mint #-}
mintValidate :: Mint -> Bool
mintValidate (Mint x) = 0 <= x && x < MOD
{-# INLINE mintValidate #-}
instance Bounded Mint where
minBound = Mint 0
maxBound = Mint $ modulus - 1
instance Enum Mint where
toEnum = mint
fromEnum = coerce
instance Integral Mint where
quotRem x y = (x / y, x - x / y * y)
toInteger = coerce (toInteger @Int)
instance Num Mint where
(+) = coerce (+%)
(-) = coerce (-%)
(*) = coerce (*%)
abs = id
signum = const (Mint 1)
fromInteger x = coerce @Int @Mint . fromInteger $ mod x modulus
instance Fractional Mint where
(/) = coerce (/%)
fromRational q = fromInteger (R.numerator q) / fromInteger (R.denominator q)
newtype instance VUM.MVector s Mint = MV_Mint (VUM.MVector s Int)
newtype instance VU.Vector Mint = V_Mint (VU.Vector Int)
instance VU.Unbox Mint
instance VGM.MVector VUM.MVector Mint where
basicLength (MV_Mint v) = VGM.basicLength v
{-# INLINE basicLength #-}
basicUnsafeSlice i n (MV_Mint v) = MV_Mint $ VGM.basicUnsafeSlice i n v
{-# INLINE basicUnsafeSlice #-}
basicOverlaps (MV_Mint v1) (MV_Mint v2) = VGM.basicOverlaps v1 v2
{-# INLINE basicOverlaps #-}
basicUnsafeNew n = MV_Mint `fmap` VGM.basicUnsafeNew n
{-# INLINE basicUnsafeNew #-}
basicInitialize (MV_Mint v) = VGM.basicInitialize v
{-# INLINE basicInitialize #-}
basicUnsafeReplicate n x = MV_Mint `fmap` VGM.basicUnsafeReplicate n (coerce x)
{-# INLINE basicUnsafeReplicate #-}
basicUnsafeRead (MV_Mint v) i = coerce `fmap` VGM.basicUnsafeRead v i
{-# INLINE basicUnsafeRead #-}
basicUnsafeWrite (MV_Mint v) i x = VGM.basicUnsafeWrite v i (coerce x)
{-# INLINE basicUnsafeWrite #-}
basicClear (MV_Mint v) = VGM.basicClear v
{-# INLINE basicClear #-}
basicSet (MV_Mint v) x = VGM.basicSet v (coerce x)
{-# INLINE basicSet #-}
basicUnsafeCopy (MV_Mint v1) (MV_Mint v2) = VGM.basicUnsafeCopy v1 v2
{-# INLINE basicUnsafeCopy #-}
basicUnsafeMove (MV_Mint v1) (MV_Mint v2) = VGM.basicUnsafeMove v1 v2
{-# INLINE basicUnsafeMove #-}
basicUnsafeGrow (MV_Mint v) n = MV_Mint `fmap` VGM.basicUnsafeGrow v n
{-# INLINE basicUnsafeGrow #-}
instance VG.Vector VU.Vector Mint where
basicUnsafeFreeze (MV_Mint v) = V_Mint `fmap` VG.basicUnsafeFreeze v
{-# INLINE basicUnsafeFreeze #-}
basicUnsafeThaw (V_Mint v) = MV_Mint `fmap` VG.basicUnsafeThaw v
{-# INLINE basicUnsafeThaw #-}
basicLength (V_Mint v) = VG.basicLength v
{-# INLINE basicLength #-}
basicUnsafeSlice i n (V_Mint v) = V_Mint $ VG.basicUnsafeSlice i n v
{-# INLINE basicUnsafeSlice #-}
basicUnsafeIndexM (V_Mint v) i = coerce `fmap` VG.basicUnsafeIndexM v i
{-# INLINE basicUnsafeIndexM #-}
basicUnsafeCopy (MV_Mint mv) (V_Mint v) = VG.basicUnsafeCopy mv v
elemseq _ = seq
{-# INLINE elemseq #-}
-------------------------------------------------------------------------------
-- for
-------------------------------------------------------------------------------
rep :: Monad m => Int -> (Int -> m ()) -> m ()
rep n = flip VFSM.mapM_ (streamG 0 (n - 1) const 0 (+) 1)
{-# INLINE rep #-}
rep' :: Monad m => Int -> (Int -> m ()) -> m ()
rep' n = flip VFSM.mapM_ (streamG 0 n const 0 (+) 1)
{-# INLINE rep' #-}
rep1 :: Monad m => Int -> (Int -> m ()) -> m ()
rep1 n = flip VFSM.mapM_ (streamG 1 (n - 1) const 0 (+) 1)
{-# INLINE rep1 #-}
rep1' :: Monad m => Int -> (Int -> m ()) -> m ()
rep1' n = flip VFSM.mapM_ (streamG 1 n const 0 (+) 1)
{-# INLINE rep1' #-}
rev :: Monad m => Int -> (Int -> m ()) -> m ()
rev n = flip VFSM.mapM_ (streamRG (n - 1) 0 const 0 (-) 1)
{-# INLINE rev #-}
rev' :: Monad m => Int -> (Int -> m ()) -> m ()
rev' n = flip VFSM.mapM_ (streamRG n 0 const 0 (-) 1)
{-# INLINE rev' #-}
rev1 :: Monad m => Int -> (Int -> m ()) -> m ()
rev1 n = flip VFSM.mapM_ (streamRG (n - 1) 1 const 0 (-) 1)
{-# INLINE rev1 #-}
rev1' :: Monad m => Int -> (Int -> m ()) -> m ()
rev1' n = flip VFSM.mapM_ (streamRG n 1 const 0 (-) 1)
{-# INLINE rev1' #-}
range :: Monad m => Int -> Int -> (Int -> m ()) -> m ()
range l r = flip VFSM.mapM_ (streamG l r const 0 (+) 1)
{-# INLINE range #-}
rangeR :: Monad m => Int -> Int -> (Int -> m ()) -> m ()
rangeR r l = flip VFSM.mapM_ (streamRG r l const 0 (-) 1)
{-# INLINE rangeR #-}
forP :: Monad m => Int -> (Int -> m ()) -> m ()
forP p = flip VFSM.mapM_ (streamG 2 p (^) 2 (+) 1)
{-# INLINE forP #-}
forG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> (Int -> m ()) -> m ()
forG l r f p g d = flip VFSM.mapM_ (streamG l r f p g d)
{-# INLINE forG #-}
forRG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> (Int -> m ()) -> m ()
forRG r l f p g d = flip VFSM.mapM_ (streamRG r l f p g d)
{-# INLINE forRG #-}
streamG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> VFSM.Stream m Int
streamG !l !r !f !p !g !d = VFSM.Stream step l
where
step x
| f x p <= r = return $ VFSM.Yield x (g x d)
| otherwise = return VFSM.Done
{-# INLINE [0] step #-}
{-# INLINE [1] streamG #-}
streamRG :: Monad m => Int -> Int -> (Int -> Int -> Int) -> Int -> (Int -> Int -> Int) -> Int -> VFSM.Stream m Int
streamRG !r !l !f !p !g !d = VFSM.Stream step r
where
step x
| f x p >= l = return $ VFSM.Yield x (g x d)
| otherwise = return VFSM.Done
{-# INLINE [0] step #-}
{-# INLINE [1] streamRG #-}
withBreakIO :: ((r -> ContT r IO b) -> ContT r IO r) -> IO r
withBreakIO = flip runContT pure . callCC
{-# INLINE withBreakIO #-}
withBreakST :: ((r -> ContT r (ST s) b) -> ContT r (ST s) r) -> (ST s) r
withBreakST = flip runContT pure . callCC
{-# INLINE withBreakST #-}