結果

問題 No.1302 Random Tree Score
ユーザー masayoshi361
提出日時 2020-11-30 08:37:41
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 438 ms / 3,000 ms
コード長 16,684 bytes
コンパイル時間 3,034 ms
コンパイル使用メモリ 202,644 KB
実行使用メモリ 13,748 KB
最終ジャッジ日時 2024-09-13 02:14:14
合計ジャッジ時間 7,611 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 14
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 1 "verify/FPS.power.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/1302"
#line 1 "library/template/template.cpp"
/* #region header */
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
using namespace std;
// types
using ll = long long;
using ull = unsigned long long;
using ld = long double;
typedef pair<ll, ll> Pl;
typedef pair<int, int> Pi;
typedef vector<ll> vl;
typedef vector<int> vi;
typedef vector<char> vc;
template <typename T>
using mat = vector<vector<T>>;
typedef vector<vector<int>> vvi;
typedef vector<vector<long long>> vvl;
typedef vector<vector<char>> vvc;
// abreviations
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define rep_(i, a_, b_, a, b, ...) for (ll i = (a), max_i = (b); i < max_i; i++)
#define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define rrep_(i, a_, b_, a, b, ...) \
for (ll i = (b - 1), min_i = (a); i >= min_i; i--)
#define rrep(i, ...) rrep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define srep(i, a, b, c) for (ll i = (a), max_i = (b); i < max_i; i += c)
#define SZ(x) ((int)(x).size())
#define pb(x) push_back(x)
#define eb(x) emplace_back(x)
#define mp make_pair
//
#define print(x) cout << x << endl
template <class T>
ostream& operator<<(ostream& os, const vector<T>& v) {
for (auto& e : v) cout << e << " ";
cout << endl;
return os;
}
void scan(int& a) { cin >> a; }
void scan(long long& a) { cin >> a; }
void scan(char& a) { cin >> a; }
void scan(double& a) { cin >> a; }
void scan(string& a) { cin >> a; }
template <class T>
void scan(vector<T>& a) {
for (auto& i : a) scan(i);
}
#define vsum(x) accumulate(all(x), 0LL)
#define vmax(a) *max_element(all(a))
#define vmin(a) *min_element(all(a))
#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
// functions
// gcd(0, x) fails.
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }
template <class T>
bool chmax(T& a, const T& b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T& a, const T& b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
template <typename T>
T mypow(T x, ll n) {
T ret = 1;
while (n > 0) {
if (n & 1) (ret *= x);
(x *= x);
n >>= 1;
}
return ret;
}
ll modpow(ll x, ll n, const ll mod) {
ll ret = 1;
while (n > 0) {
if (n & 1) (ret *= x);
(x *= x);
n >>= 1;
x %= mod;
ret %= mod;
}
return ret;
}
uint64_t my_rand(void) {
static uint64_t x = 88172645463325252ULL;
x = x ^ (x << 13);
x = x ^ (x >> 7);
return x = x ^ (x << 17);
}
int popcnt(ull x) { return __builtin_popcountll(x); }
template <typename T>
vector<int> IOTA(vector<T> a) {
int n = a.size();
vector<int> id(n);
iota(all(id), 0);
sort(all(id), [&](int i, int j) { return a[i] < a[j]; });
return id;
}
struct Timer {
clock_t start_time;
void start() { start_time = clock(); }
int lap() {
// return x ms.
return (clock() - start_time) * 1000 / CLOCKS_PER_SEC;
}
};
/* #endregion*/
// constant
#define inf 1000000000ll
#define INF 4000000004000000000LL
#define endl '\n'
const long double eps = 0.000000000000001;
const long double PI = 3.141592653589793;
#line 3 "verify/FPS.power.test.cpp"
// library
#line 1 "library/convolution/NTT.cpp"
template <typename Mint>
struct NTT {
vector<Mint> dw, idw;
int max_base;
Mint root;
NTT() {
const unsigned Mod = Mint::get_mod();
assert(Mod >= 3 && Mod % 2 == 1);
auto tmp = Mod - 1;
max_base = 0;
while (tmp % 2 == 0) tmp >>= 1, max_base++;
root = 2;
while (root.pow((Mod - 1) >> 1) == 1) root += 1;
assert(root.pow(Mod - 1) == 1);
dw.resize(max_base);
idw.resize(max_base);
for (int i = 0; i < max_base; i++) {
dw[i] = -root.pow((Mod - 1) >> (i + 2));
idw[i] = Mint(1) / dw[i];
}
}
void ntt(vector<Mint> &a) {
const int n = (int)a.size();
assert((n & (n - 1)) == 0);
assert(__builtin_ctz(n) <= max_base);
for (int m = n; m >>= 1;) {
Mint w = 1;
for (int s = 0, k = 0; s < n; s += 2 * m) {
for (int i = s, j = s + m; i < s + m; ++i, ++j) {
auto x = a[i], y = a[j] * w;
a[i] = x + y, a[j] = x - y;
}
w *= dw[__builtin_ctz(++k)];
}
}
}
void intt(vector<Mint> &a, bool f = true) {
const int n = (int)a.size();
assert((n & (n - 1)) == 0);
assert(__builtin_ctz(n) <= max_base);
for (int m = 1; m < n; m *= 2) {
Mint w = 1;
for (int s = 0, k = 0; s < n; s += 2 * m) {
for (int i = s, j = s + m; i < s + m; ++i, ++j) {
auto x = a[i], y = a[j];
a[i] = x + y, a[j] = (x - y) * w;
}
w *= idw[__builtin_ctz(++k)];
}
}
if (f) {
Mint inv_sz = Mint(1) / n;
for (int i = 0; i < n; i++) a[i] *= inv_sz;
}
}
vector<Mint> multiply(vector<Mint> a, vector<Mint> b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while ((1 << nbase) < need) nbase++;
int sz = 1 << nbase;
a.resize(sz, 0);
b.resize(sz, 0);
ntt(a);
ntt(b);
Mint inv_sz = Mint(1) / sz;
for (int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
intt(a, false);
a.resize(need);
return a;
}
};
#line 1 "library/math/FormalPowerSeries.cpp"
template <typename T>
struct FormalPowerSeries : vector<T> {
using vector<T>::vector;
using P = FormalPowerSeries;
using MULT = function<P(P, P)>;
static MULT& get_mult() {
static MULT mult = nullptr;
return mult;
}
static void set_fft(MULT f) { get_mult() = f; }
// 0
void shrink() {
while (this->size() && this->back() == T(0)) this->pop_back();
}
P operator+(const P& r) const { return P(*this) += r; }
P operator+(const T& v) const { return P(*this) += v; }
P operator-(const P& r) const { return P(*this) -= r; }
P operator-(const T& v) const { return P(*this) -= v; }
P operator*(const P& r) const { return P(*this) *= r; }
P operator*(const T& v) const { return P(*this) *= v; }
P operator/(const P& r) const { return P(*this) /= r; }
P operator%(const P& r) const { return P(*this) %= r; }
P& operator+=(const P& r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < r.size(); i++) (*this)[i] += r[i];
return *this;
}
P& operator+=(const T& r) {
if (this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
P& operator-=(const P& r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < r.size(); i++) (*this)[i] -= r[i];
shrink();
return *this;
}
P& operator-=(const T& r) {
if (this->empty()) this->resize(1);
(*this)[0] -= r;
shrink();
return *this;
}
P& operator*=(const T& v) {
const int n = (int)this->size();
for (int k = 0; k < n; k++) (*this)[k] *= v;
return *this;
}
P& operator*=(const P& r) {
if (this->empty() || r.empty()) {
this->clear();
return *this;
}
assert(get_mult() != nullptr);
return *this = get_mult()(*this, r);
}
P& operator%=(const P& r) { return *this -= *this / r * r; }
P operator-() const {
P ret(this->size());
for (int i = 0; i < this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
P& operator/=(const P& r) {
if (this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
}
P pre(int sz) const {
return P(begin(*this), begin(*this) + min((int)this->size(), sz));
}
// f/x^sz
P operator>>(int sz) const {
if (this->size() <= sz) return {};
P ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
// f*x^sz
P operator<<(int sz) const {
P ret(*this);
ret.insert(ret.begin(), sz, T(0));
return ret;
}
//
P rev(int deg = -1) const {
P ret(*this);
if (deg != -1) ret.resize(deg, T(0));
reverse(begin(ret), end(ret));
return ret;
}
//
P diff() const {
const int n = (int)this->size();
P ret(max(0, n - 1));
for (int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
return ret;
}
//
P integral() const {
const int n = (int)this->size();
P ret(n + 1);
ret[0] = T(0);
for (int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);
return ret;
}
// 1/fdeg
// F(0) must not be 0
P inv(int deg = -1) const {
assert(((*this)[0]) != T(0));
const int n = (int)this->size();
if (deg == -1) deg = n;
P ret({T(1) / (*this)[0]});
for (int i = 1; i < deg; i <<= 1) {
ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
}
return ret.pre(deg);
}
// F(0) must be 1
P log(int deg = -1) const {
assert((*this)[0] == 1);
const int n = (int)this->size();
if (deg == -1) deg = n;
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
P sqrt(int deg = -1) const {
const int n = (int)this->size();
if (deg == -1) deg = n;
if ((*this)[0] == T(0)) {
for (int i = 1; i < n; i++) {
if ((*this)[i] != T(0)) {
if (i & 1) return {};
if (deg - i / 2 <= 0) break;
auto ret = (*this >> i).sqrt(deg - i / 2) << (i / 2);
if (ret.size() < deg) ret.resize(deg, T(0));
return ret;
}
}
return P(deg, 0);
}
P ret({T(1)});
T inv2 = T(1) / T(2);
for (int i = 1; i < deg; i <<= 1) {
ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;
}
return ret.pre(deg);
}
// F(0) must be 0
P exp(int deg = -1) const {
assert((*this)[0] == T(0));
const int n = (int)this->size();
if (deg == -1) deg = n;
P ret({T(1)});
for (int i = 1; i < deg; i <<= 1) {
ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1);
}
return ret.pre(deg);
}
P pow(int64_t k, int deg = -1) const {
const int n = (int)this->size();
if (deg == -1) deg = n;
for (int i = 0; i < n; i++) {
if ((*this)[i] != T(0)) {
T rev = T(1) / (*this)[i];
P C(*this * rev);
P D(n - i);
for (int j = i; j < n; j++) D[j - i] = C[j];
D = (D.log() * k).exp() * (*this)[i].pow(k);
P E(deg);
if (i * k > deg) return E;
auto S = i * k;
for (int j = 0; j + S < deg && j < D.size(); j++)
E[j + S] = D[j];
return E;
}
}
return *this;
}
//
T eval(T x) const {
T r = 0, w = 1;
for (auto& v : *this) {
r += w * v;
w *= x;
}
return r;
}
};
// NTT<mint> ntt;
// FPS mult_ntt(const FPS::P& a, const FPS::P& b) {
// auto ret = ntt.multiply(a, b);
// return FPS::P(ret.begin(), ret.end());
// }
// FPS mult(const FPS::P& a, const FPS::P& b) {
// FPS c(a.size() + b.size() - 1);
// rep(i, a.size()) rep(j, b.size()) { c[i + j] += a[i] * b[j]; }
// return c;
// }
#line 1 "library/math/combination.cpp"
/**
* @brief Combination(P, C, H, Stirling number, Bell number)
* @docs docs/Combination.md
*/
template <typename T>
struct Combination {
vector<T> _fact, _rfact, _inv;
Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {
_fact[0] = _rfact[sz] = _inv[0] = 1;
for (int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;
_rfact[sz] /= _fact[sz];
for (int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);
for (int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];
}
inline T fact(int k) const { return _fact[k]; }
inline T rfact(int k) const { return _rfact[k]; }
inline T inv(int k) const { return _inv[k]; }
T P(int n, int r) const {
if (r < 0 || n < r) return 0;
return fact(n) * rfact(n - r);
}
T C(int p, int q) const {
if (q < 0 || p < q) return 0;
return fact(p) * rfact(q) * rfact(p - q);
}
T H(int n, int r) const {
if (n < 0 || r < 0) return (0);
return r == 0 ? 1 : C(n + r - 1, r);
}
// O(klog(n))
// nk1
T Stirling(int n, int k) {
T res = 0;
rep(i, k + 1) {
res += (T)((k - i) % 2 ? -1 : 1) * C(k, i) * mypow<T>(i, n);
}
return res / _fact[k];
}
// O(klog(n))
// nk0
// k
T Bell(int n, int k) {
if (n < k) k = n;
vector<T> sm(k + 1);
sm[0] = 1;
rep(j, 1, k + 1) { sm[j] = sm[j - 1] + (T)(j % 2 ? -1 : 1) / _fact[j]; }
T res = 0;
rep(i, k + 1) { res += mypow<T>(i, n) / _fact[i] * sm[k - i]; }
return res;
}
};
#line 1 "library/mod/modint.cpp"
template <int mod>
struct modint {
int x;
modint() : x(0) {}
modint(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
modint& operator+=(const modint& p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
modint& operator-=(const modint& p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
modint& operator*=(const modint& p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
modint& operator/=(const modint& p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint(-x); }
modint operator+(const modint& p) const { return modint(*this) += p; }
modint operator-(const modint& p) const { return modint(*this) -= p; }
modint operator*(const modint& p) const { return modint(*this) *= p; }
modint operator/(const modint& p) const { return modint(*this) /= p; }
bool operator==(const modint& p) const { return x == p.x; }
bool operator!=(const modint& p) const { return x != p.x; }
modint inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return modint(u);
}
modint pow(int64_t n) const {
modint ret(1), mul(x);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream& operator<<(ostream& os, const modint& p) {
return os << p.x;
}
friend istream& operator>>(istream& is, modint& a) {
long long t;
is >> t;
a = modint<mod>(t);
return (is);
}
static int get_mod() { return mod; }
inline int get() { return x; }
};
#line 8 "verify/FPS.power.test.cpp"
using mint = modint<998244353>;
using FPS = FormalPowerSeries<mint>;
NTT<mint> ntt;
FPS mult_ntt(const FPS::P& a, const FPS::P& b) {
auto ret = ntt.multiply(a, b);
return FPS::P(ret.begin(), ret.end());
}
// FPS::set_fft(mult_ntt); in main
int main() {
FPS::set_fft(mult_ntt);
int n;
cin >> n;
Combination<mint> comb(n);
FPS f(n + 1);
rep(i, n + 1) { f[i] = (mint)(i + 1) / comb.fact(i); }
f = f.pow(n, n);
print(f[n - 2] * comb.fact(n - 2) / mypow<mint>(n, n - 2));
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0