結果

問題 No.74 貯金箱の退屈
ユーザー fumofumofunifumofumofuni
提出日時 2020-11-30 21:57:07
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 3 ms / 5,000 ms
コード長 2,960 bytes
コンパイル時間 2,284 ms
コンパイル使用メモリ 199,848 KB
最終ジャッジ日時 2025-01-16 10:32:32
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
#define rep(i,n) for(ll i=0;i<n;i++)
#define repl(i,l,r) for(ll i=(l);i<(r);i++)
#define per(i,n) for(ll i=(n)-1;i>=0;i--)
#define perl(i,r,l) for(ll i=r-1;i>=l;i--)
#define fi first
#define se second
#define pb push_back
#define ins insert
#define pqueue(x) priority_queue<x,vector<x>,greater<x>>
#define all(x) (x).begin(),(x).end()
#define CST(x) cout<<fixed<<setprecision(x)
#define vtpl(x,y,z) vector<tuple<x,y,z>>
#define rev(x) reverse(x);
using ll=long long;
using vl=vector<ll>;
using vvl=vector<vector<ll>>;
using pl=pair<ll,ll>;
using vpl=vector<pl>;
using vvpl=vector<vpl>;
const ll MOD=1000000007;
const ll MOD9=998244353;
const int inf=1e9+10;
const ll INF=4e18;
const ll dy[9]={0,0,1,-1,1,1,-1,-1,0};
const ll dx[9]={1,-1,0,0,1,-1,1,-1,0};
template<class T> inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template<class T> inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
const int MAX_ROW = 510; // to be set appropriately
const int MAX_COL = 510; // to be set appropriately
struct BitMatrix {
int H, W;
bitset<MAX_COL> val[MAX_ROW];
BitMatrix(int m = 1, int n = 1) : H(m), W(n) {}
inline bitset<MAX_COL>& operator [] (int i) {return val[i];}
};
int GaussJordan(BitMatrix &A, bool is_extended = false) {
int rank = 0;
for (int col = 0; col < A.W; ++col) {
if (is_extended && col == A.W - 1) break;
int pivot = -1;
for (int row = rank; row < A.H; ++row) {
if (A[row][col]) {
pivot = row;
break;
}
}
if (pivot == -1) continue;
swap(A[pivot], A[rank]);
for (int row = 0; row < A.H; ++row) {
if (row != rank && A[row][col]) A[row] ^= A[rank];
}
++rank;
}
return rank;
}
int linear_equation(BitMatrix A, vector<int> b, vector<int> &res) {
int m = A.H, n = A.W;
BitMatrix M(m, n + 1);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) M[i][j] = A[i][j];
M[i][n] = b[i];
}
int rank = GaussJordan(M, true);
// check if it has no solution
for (int row = rank; row < m; ++row) if (M[row][n]) return -1;
// answer
res.assign(n, 0);
for (int i = 0; i < rank; ++i) res[i] = M[i][n];
return rank;
}
int main(){
ll n;cin >> n;
vl v(n);rep(i,n)cin >> v[i];
vector<int> b(n);rep(i,n)cin >> b[i],b[i]^=1;
BitMatrix m(n,n);
rep(i,n){
ll l=(i+v[i])%n;
ll r=(-v[i]+inf*n+i)%n;
if(l==r){
m[l][i]=1;
}
else{
m[l][i]=1,m[r][i]=1;
}
}
vector<int> ret;
int ok=linear_equation(m,b,ret);
//cout << ok <<endl;
if(ok!=-1){
cout << "Yes" <<endl;
//rep(i,n)cout << ret[i] <<" ";cout << endl;
}
else cout << "No" <<endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0