結果

問題 No.1302 Random Tree Score
ユーザー 👑 ygussany
提出日時 2020-12-01 12:37:06
言語 C
(gcc 13.3.0)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 3,423 bytes
コンパイル時間 279 ms
コンパイル使用メモリ 34,012 KB
実行使用メモリ 14,096 KB
最終ジャッジ日時 2024-09-13 02:56:24
合計ジャッジ時間 25,298 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 13 TLE * 1
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <stdio.h>
#include <stdlib.h>
const int Mod = 998244353;
int bit[21], bit_inv[21];
long long root[21], root_inv[21];
long long div_mod(long long x, long long y, long long z)
{
if (x % y == 0) return x / y;
else return (div_mod((1 + x / y) * y - x, (z % y), y) * z + x) / y;
}
long long pow_mod(int n, int k)
{
long long N, ans = 1;
for (N = n; k > 0; k >>= 1, N = N * N % Mod) if (k & 1) ans = ans * N % Mod;
return ans;
}
void NTT(int k, int a[], int z[])
{
if (k == 0) {
z[0] = a[0];
return;
}
int i, d = bit[k-1];
long long tmp;
int tmpp, *b = (int*)malloc(sizeof(int) * d), *c = (int*)malloc(sizeof(int) * d), *x = (int*)malloc(sizeof(int) * d), *y = (int*)malloc(sizeof
        (int) * d);
for (i = 0; i < d; i++) {
b[i] = a[i*2];
c[i] = a[i*2+1];
}
NTT(k - 1, b, x);
NTT(k - 1, c, y);
for (i = 0, tmp = 1; i < d; i++, tmp = tmp * root[k] % Mod) {
tmpp = tmp * y[i] % Mod;
z[i] = x[i] + tmpp;
if (z[i] >= Mod) z[i] -= Mod;
z[i+d] = x[i] - tmpp;
if (z[i+d] < 0) z[i+d] += Mod;
}
free(b);
free(c);
free(x);
free(y);
}
void NTT_reverse(int k, int z[], int a[])
{
if (k == 0) {
a[0] = z[0];
return;
}
int i, d = bit[k-1];
long long tmp;
int tmpp, *b = (int*)malloc(sizeof(int) * d), *c = (int*)malloc(sizeof(int) * d), *x = (int*)malloc(sizeof(int) * d), *y = (int*)malloc(sizeof
        (int) * d);
for (i = 0; i < d; i++) {
x[i] = z[i*2];
y[i] = z[i*2+1];
}
NTT_reverse(k - 1, x, b);
NTT_reverse(k - 1, y, c);
for (i = 0, tmp = 1; i < d; i++, tmp = tmp * root_inv[k] % Mod) {
tmpp = tmp * c[i] % Mod;
a[i] = b[i] + tmpp;
if (a[i] >= Mod) a[i] -= Mod;
a[i+d] = b[i] - tmpp;
if (a[i+d] < 0) a[i+d] += Mod;
}
free(b);
free(c);
free(x);
free(y);
}
void prod_poly_NTT(int da, int db, int a[], int b[], int c[])
{
int i, k;
for (k = 0, bit[0] = 1; bit[k] < da + db; k++) bit[k+1] = bit[k] * 2;
for (i = k - 1, bit_inv[k] = div_mod(1, bit[k], Mod); i >= 0; i--) bit_inv[i] = bit_inv[i+1] * 2 % Mod;
for (i = k - 1, root[k] = pow_mod(3, (Mod - 1) / bit[k]), root_inv[k] = pow_mod(3, Mod - 1 - (Mod - 1) / bit[k]); i >= 0; i--) {
root[i] = root[i+1] * root[i+1] % Mod;
root_inv[i] = root_inv[i+1] * root_inv[i+1] % Mod;
}
for (i = da; i < bit[k]; i++) a[i] = 0;
for (i = db; i < bit[k]; i++) b[i] = 0;
int *x = (int*)malloc(sizeof(int) * bit[k]), *y = (int*)malloc(sizeof(int) * bit[k]), *z = (int*)malloc(sizeof(int) * bit[k]);
NTT(k, a, x);
NTT(k, b, y);
for (i = 0; i < bit[k]; i++) z[i] = (long long)x[i] * y[i] % Mod;
NTT_reverse(k, z, c);
for (i = 0; i < da + db; i++) c[i] = (long long)c[i] * bit_inv[k] % Mod;
free(x);
free(y);
free(z);
}
int main()
{
int N;
scanf("%d", &N);
int i, j, k, a[262145], b[262145], c[262145], ans[100001];
long long fact[100001], fact_inv[100001];
for (i = 1, fact[0] = 1; i <= N; i++) fact[i] = fact[i-1] * i % Mod;
for (i = N - 1, fact_inv[N] = div_mod(1, fact[N], Mod); i >= 0; i--) fact_inv[i] = fact_inv[i+1] * (i + 1) % Mod;
for (i = 0; i < N - 1; i++) a[i] = fact_inv[i] * (i + 1) % Mod;
for (k = N, ans[0] = fact[N-2]; k > 0; k >>= 1) {
if ((k & 1) == 1) {
for (i = 0; i < N - 1; i++) b[i] = ans[i];
prod_poly_NTT(N - 1, N - 1, a, b, c);
for (i = 0; i < N - 1; i++) ans[i] = c[i];
}
prod_poly_NTT(N - 1, N - 1, a, a, b);
for (i = 0; i < N - 1; i++) a[i] = b[i];
}
printf("%lld\n", div_mod(ans[N-2], pow_mod(N, N - 2), Mod));
fflush(stdout);
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0