結果
問題 | No.1302 Random Tree Score |
ユーザー | 👑 ygussany |
提出日時 | 2020-12-01 12:37:26 |
言語 | C++17(clang) (17.0.6 + boost 1.83.0) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 3,423 bytes |
コンパイル時間 | 3,758 ms |
コンパイル使用メモリ | 105,216 KB |
実行使用メモリ | 15,208 KB |
最終ジャッジ日時 | 2024-09-13 02:57:06 |
合計ジャッジ時間 | 26,865 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 581 ms
7,156 KB |
testcase_03 | AC | 1,359 ms
10,924 KB |
testcase_04 | AC | 556 ms
7,332 KB |
testcase_05 | TLE | - |
testcase_06 | AC | 2,506 ms
15,108 KB |
testcase_07 | AC | 536 ms
7,172 KB |
testcase_08 | AC | 1,510 ms
10,264 KB |
testcase_09 | AC | 2,406 ms
14,824 KB |
testcase_10 | AC | 2,611 ms
14,972 KB |
testcase_11 | AC | 527 ms
7,048 KB |
testcase_12 | AC | 2,918 ms
14,800 KB |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 2,404 ms
14,956 KB |
testcase_15 | AC | 2,812 ms
15,208 KB |
testcase_16 | AC | 2 ms
6,940 KB |
ソースコード
#include <stdio.h> #include <stdlib.h> const int Mod = 998244353; int bit[21], bit_inv[21]; long long root[21], root_inv[21]; long long div_mod(long long x, long long y, long long z) { if (x % y == 0) return x / y; else return (div_mod((1 + x / y) * y - x, (z % y), y) * z + x) / y; } long long pow_mod(int n, int k) { long long N, ans = 1; for (N = n; k > 0; k >>= 1, N = N * N % Mod) if (k & 1) ans = ans * N % Mod; return ans; } void NTT(int k, int a[], int z[]) { if (k == 0) { z[0] = a[0]; return; } int i, d = bit[k-1]; long long tmp; int tmpp, *b = (int*)malloc(sizeof(int) * d), *c = (int*)malloc(sizeof(int) * d), *x = (int*)malloc(sizeof(int) * d), *y = (int*)malloc(sizeof(int) * d); for (i = 0; i < d; i++) { b[i] = a[i*2]; c[i] = a[i*2+1]; } NTT(k - 1, b, x); NTT(k - 1, c, y); for (i = 0, tmp = 1; i < d; i++, tmp = tmp * root[k] % Mod) { tmpp = tmp * y[i] % Mod; z[i] = x[i] + tmpp; if (z[i] >= Mod) z[i] -= Mod; z[i+d] = x[i] - tmpp; if (z[i+d] < 0) z[i+d] += Mod; } free(b); free(c); free(x); free(y); } void NTT_reverse(int k, int z[], int a[]) { if (k == 0) { a[0] = z[0]; return; } int i, d = bit[k-1]; long long tmp; int tmpp, *b = (int*)malloc(sizeof(int) * d), *c = (int*)malloc(sizeof(int) * d), *x = (int*)malloc(sizeof(int) * d), *y = (int*)malloc(sizeof(int) * d); for (i = 0; i < d; i++) { x[i] = z[i*2]; y[i] = z[i*2+1]; } NTT_reverse(k - 1, x, b); NTT_reverse(k - 1, y, c); for (i = 0, tmp = 1; i < d; i++, tmp = tmp * root_inv[k] % Mod) { tmpp = tmp * c[i] % Mod; a[i] = b[i] + tmpp; if (a[i] >= Mod) a[i] -= Mod; a[i+d] = b[i] - tmpp; if (a[i+d] < 0) a[i+d] += Mod; } free(b); free(c); free(x); free(y); } void prod_poly_NTT(int da, int db, int a[], int b[], int c[]) { int i, k; for (k = 0, bit[0] = 1; bit[k] < da + db; k++) bit[k+1] = bit[k] * 2; for (i = k - 1, bit_inv[k] = div_mod(1, bit[k], Mod); i >= 0; i--) bit_inv[i] = bit_inv[i+1] * 2 % Mod; for (i = k - 1, root[k] = pow_mod(3, (Mod - 1) / bit[k]), root_inv[k] = pow_mod(3, Mod - 1 - (Mod - 1) / bit[k]); i >= 0; i--) { root[i] = root[i+1] * root[i+1] % Mod; root_inv[i] = root_inv[i+1] * root_inv[i+1] % Mod; } for (i = da; i < bit[k]; i++) a[i] = 0; for (i = db; i < bit[k]; i++) b[i] = 0; int *x = (int*)malloc(sizeof(int) * bit[k]), *y = (int*)malloc(sizeof(int) * bit[k]), *z = (int*)malloc(sizeof(int) * bit[k]); NTT(k, a, x); NTT(k, b, y); for (i = 0; i < bit[k]; i++) z[i] = (long long)x[i] * y[i] % Mod; NTT_reverse(k, z, c); for (i = 0; i < da + db; i++) c[i] = (long long)c[i] * bit_inv[k] % Mod; free(x); free(y); free(z); } int main() { int N; scanf("%d", &N); int i, j, k, a[262145], b[262145], c[262145], ans[100001]; long long fact[100001], fact_inv[100001]; for (i = 1, fact[0] = 1; i <= N; i++) fact[i] = fact[i-1] * i % Mod; for (i = N - 1, fact_inv[N] = div_mod(1, fact[N], Mod); i >= 0; i--) fact_inv[i] = fact_inv[i+1] * (i + 1) % Mod; for (i = 0; i < N - 1; i++) a[i] = fact_inv[i] * (i + 1) % Mod; for (k = N, ans[0] = fact[N-2]; k > 0; k >>= 1) { if ((k & 1) == 1) { for (i = 0; i < N - 1; i++) b[i] = ans[i]; prod_poly_NTT(N - 1, N - 1, a, b, c); for (i = 0; i < N - 1; i++) ans[i] = c[i]; } prod_poly_NTT(N - 1, N - 1, a, a, b); for (i = 0; i < N - 1; i++) a[i] = b[i]; } printf("%lld\n", div_mod(ans[N-2], pow_mod(N, N - 2), Mod)); fflush(stdout); return 0; }