結果
問題 | No.3030 ミラー・ラビン素数判定法のテスト |
ユーザー | こまる |
提出日時 | 2020-12-01 12:57:42 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 748 bytes |
コンパイル時間 | 258 ms |
コンパイル使用メモリ | 81,920 KB |
実行使用メモリ | 64,896 KB |
最終ジャッジ日時 | 2024-04-29 14:40:22 |
合計ジャッジ時間 | 1,572 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | RE | - |
testcase_01 | RE | - |
testcase_02 | RE | - |
testcase_03 | RE | - |
testcase_04 | RE | - |
testcase_05 | RE | - |
testcase_06 | RE | - |
testcase_07 | RE | - |
testcase_08 | RE | - |
testcase_09 | RE | - |
ソースコード
def miller_rabin(n, check): d, s = n - 1, 0 while d % 2 == 0: d >>= 1 s += 1 for a in check: if n <= a: return True a = pow(a, d, n) if a == 1: continue r = 1 while a != n - 1: if r == s: return False a = a * a % n r += 1 return True def is_prime32(n): miller_rabin(n, [2, 7, 61]) def is_prime64(n): miller_rabin(n, [2, 3, 5, 7, 325, 9375, 28178, 450775, 9780504, 1795265022]) def is_prime(n): if n <= 1: return False if n <= 3: return True if n % 2 == 0: return False if n < 4759123141: return is_prime32(n) if n < 18446744073709551615: return is_prime64(n) for i in range(int(input())): x = int(input()) print(x, int(is_prime(x)))