結果
問題 | No.8030 ミラー・ラビン素数判定法のテスト |
ユーザー | こまる |
提出日時 | 2020-12-01 12:59:23 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
AC
|
実行時間 | 2,249 ms / 9,973 ms |
コード長 | 785 bytes |
コンパイル時間 | 235 ms |
コンパイル使用メモリ | 12,544 KB |
実行使用メモリ | 10,752 KB |
最終ジャッジ日時 | 2024-11-16 23:35:15 |
合計ジャッジ時間 | 6,788 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 29 ms
10,624 KB |
testcase_01 | AC | 28 ms
10,752 KB |
testcase_02 | AC | 29 ms
10,624 KB |
testcase_03 | AC | 30 ms
10,752 KB |
testcase_04 | AC | 1,223 ms
10,752 KB |
testcase_05 | AC | 1,181 ms
10,752 KB |
testcase_06 | AC | 395 ms
10,624 KB |
testcase_07 | AC | 397 ms
10,624 KB |
testcase_08 | AC | 396 ms
10,752 KB |
testcase_09 | AC | 2,249 ms
10,624 KB |
ソースコード
import os import sys def miller_rabin(n, check): d, s = n - 1, 0 while d % 2 == 0: d >>= 1 s += 1 for a in check: if n <= a: return True a = pow(a, d, n) if a == 1: continue r = 1 while a != n - 1: if r == s: return False a = a * a % n r += 1 return True def is_prime32(n): return miller_rabin(n, [2, 7, 61]) def is_prime64(n): return miller_rabin(n, [2, 3, 5, 7, 325, 9375, 28178, 450775, 9780504, 1795265022]) def is_prime(n): if n <= 1: return False if n <= 3: return True if n % 2 == 0: return False if n < 4759123141: return is_prime32(n) if n < 18446744073709551615: return is_prime64(n) for i in range(int(input())): x = int(input()) print(x, int(is_prime(x)))