結果
| 問題 |
No.1302 Random Tree Score
|
| コンテスト | |
| ユーザー |
sak
|
| 提出日時 | 2020-12-02 04:01:27 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 3,180 bytes |
| コンパイル時間 | 2,510 ms |
| コンパイル使用メモリ | 204,856 KB |
| 最終ジャッジ日時 | 2025-01-16 13:01:18 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 5 TLE * 9 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> p_ll;
template<class T>
void debug(T itr1, T itr2) { auto now = itr1; while(now<itr2) { cout << *now << " "; now++; } cout << endl; }
#define repr(i,from,to) for (ll i=(ll)from; i<(ll)to; i++)
#define all(vec) vec.begin(), vec.end()
#define rep(i,N) repr(i,0,N)
#define per(i,N) for (int i=(int)N-1; i>=0; i--)
const ll MOD = 998244353;
const ll LLINF = pow(2,61)-1;
const int INF = pow(2,30)-1;
vector<ll> fac;
void c_fac(int x=pow(10,6)+10) { fac.resize(x,true); rep(i,x) fac[i] = i ? (fac[i-1]*i)%MOD : 1; }
ll modpow(ll x, ll p) { ll result = 1, now = 1, pm = x; while (now<=p) { if (p&now) { result = result * pm % MOD; } now*=2; pm = pm*pm % MOD; } return result; }
ll inv(ll a, ll m=MOD) { ll b = m, x = 1, y = 0; while (b!=0) { int d = a/b; a -= b*d; swap(a,b); x -= y*d; swap(x,y); } return (x+m)%m; }
ll nck(ll n, ll k) { return fac[n]*inv(fac[k]*fac[n-k]%MOD)%MOD; }
ll gcd(ll a, ll b) { if (a<b) swap(a,b); return b==0 ? a : gcd(b, a%b); }
ll lcm(ll a, ll b) { return a/gcd(a,b)*b; }
// ----------------------------------------------------------------------
// ----------------------------------------------------------------------
struct FastNumberTheoreticTransform {
ll size = 1, size_x12, root;
vector<ll> x1, x2, theta;
FastNumberTheoreticTransform(ll N) {
size_x12 = 2*N-1;
size = 1; while (size<=size_x12) size<<=1;
root = modpow(3,MOD/size);
x1.resize(size); x2.resize(size); theta.resize(size);
rep(i,size) theta[i] = i==0 ? 1 : theta[i-1]*root % MOD;
}
void set(vector<ll> &v1, vector<ll> &v2) {
x1 = v1; x2 = v2; }
vector<ll> convolution(vector<ll> &x, bool rev, ll s, ll pos=0) {
if (s==1) return {x[pos]};
vector<ll> ex = convolution(x,rev,s/2,pos), ox = convolution(x,rev,s/2,pos+size/s);
vector<ll> result(s);
rep(i,s) result[i] = (ex[i%(s/2)] + theta[size/s*i] * ox[i%(s/2)]) % MOD;
if (rev && s==size) {
reverse(result.begin()+1, result.end());
ll invs = inv(size);
for (auto &x: result) x = x * invs % MOD;
}
return result;
};
vector<ll> mul(vector<ll> &v1, vector<ll> &v2) {
set(v1,v2);
vector<ll> cx1 = convolution(x1, false, size), cx2 = convolution(x2, false, size);
vector<ll> cx12(size); rep(i,size) cx12[i] = cx1[i] * cx2[i] % MOD;
vector<ll> x12 = convolution(cx12, true, size);
vector<ll> result(v1.size()); copy(x12.begin(), x12.begin()+v1.size(), result.begin());
return result;
}
};
// ----------------------------------------------------------------------
// ----------------------------------------------------------------------
int main() {
ll N; cin >> N;
c_fac();
vector<ll> kei(N); rep(i,N) kei[i] = (i+1)*inv(fac[i])%MOD;
// debug(all(kei));
FastNumberTheoreticTransform fntt(N);
vector<ll> result(N,0); result[0] = 1;
ll np = 1;
while (np<=N) {
if (np&N) result = fntt.mul(result,kei);
kei = fntt.mul(kei,kei);
np<<=1;
}
ll ho = fac[N-2] * inv(modpow(N,N-2)) % MOD;
rep(i,N) result[i] = result[i] * ho % MOD;
// debug(all(result));
cout << result[N-2] << endl;
return 0;
}
sak