結果
| 問題 |
No.1305 Speak of the Devil
|
| コンテスト | |
| ユーザー |
carrot46
|
| 提出日時 | 2020-12-02 08:19:58 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 7,523 bytes |
| コンパイル時間 | 1,689 ms |
| コンパイル使用メモリ | 167,168 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-09-13 03:50:59 |
| 合計ジャッジ時間 | 2,439 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 23 |
ソースコード
#include <bits/stdc++.h>
//#include <chrono>
//#pragma GCC optimize("O3")
using namespace std;
#define reps(i,s,n) for(int i = s; i < n; i++)
#define rep(i,n) reps(i,0,n)
#define Rreps(i,n,e) for(int i = n - 1; i >= e; --i)
#define Rrep(i,n) Rreps(i,n,0)
#define ALL(a) a.begin(), a.end()
using ll = long long;
using vec = vector<ll>;
using mat = vector<vec>;
ll N,M,H,W,Q,K,A,B;
string S;
using P = pair<ll, ll>;
const ll INF = (1LL<<60);
template<class T> bool chmin(T &a, const T &b){
if(a > b) {a = b; return true;}
else return false;
}
template<class T> bool chmax(T &a, const T &b){
if(a < b) {a = b; return true;}
else return false;
}
/*
template <unsigned long long mod > class modint{
public:
ll x;
constexpr modint(){x = 0;}
constexpr modint(ll _x) : x((_x < 0 ? ((_x += (LLONG_MAX / mod) * mod) < 0 ? _x + (LLONG_MAX / mod) * mod : _x) : _x)%mod){}
constexpr modint set_raw(ll _x){
//_x in [0, mod)
x = _x;
return *this;
}
constexpr modint operator-(){
return x == 0 ? 0 : mod - x;
}
constexpr modint& operator+=(const modint& a){
if((x += a.x) >= mod) x -= mod;
return *this;
}
constexpr modint operator+(const modint& a) const{
return modint(*this) += a;
}
constexpr modint& operator-=(const modint& a){
if((x -= a.x) < 0) x += mod;
return *this;
}
constexpr modint operator-(const modint& a) const{
return modint(*this) -= a;
}
constexpr modint& operator*=(const modint& a){
(x *= a.x)%=mod;
return *this;
}
constexpr modint operator*(const modint& a) const{
return modint(*this) *= a;
}
constexpr modint pow(unsigned long long pw) const{
modint res(1), comp(*this);
while(pw){
if(pw&1) res *= comp;
comp *= comp;
pw >>= 1;
}
return res;
}
//以下、modが素数のときのみ
constexpr modint inv() const{
if(x == 2) return (mod + 1) >> 1;
return modint(*this).pow(mod - 2);
}
constexpr modint& operator/=(const modint &a){
(x *= a.inv().x)%=mod;
return *this;
}
constexpr modint operator/(const modint &a) const{
return modint(*this) /= a;
}
};
#define mod1 998244353
using mint = modint<mod1>;
ostream& operator<<(ostream& os, const mint& a){
os << a.x;
return os;
}
using vm = vector<mint>;
class NTT{
static int root;
static vm root_pow;
static vector<int> id;
static void make_root_pow(int n){
if(n + 1 == (int)root_pow.size()) return;
root_pow.resize(n + 1);
mint new_root = mint(root).pow((mod1 - 1) / n);
root_pow[0].x = 1;
rep(i,n){
root_pow[i + 1] = root_pow[i] * new_root;
}
}
static void make_bit_reverse(int n){
if(n == (int)id.size()) return;
if(n == (int)id.size() * 2){
int n2 = (int)id.size();
id.resize(n);
rep(i, n2) id[i]<<=1;
copy(id.begin(), id.begin() + n2, id.begin() + n2);
reps(i, n2, n) id[i]|=1;
}else {
id.resize(n);
iota(ALL(id), 0);
for (int i = 1; (1 << i) <= n; ++i) {
int l = 1 << (i - 1), r = 1 << i;
int plus = n >> i;
for (int j = l; j < r; ++j) {
int temp = id[j - l] + plus;
if (j < temp) swap(id[j], id[temp]);
}
}
}
}
static void dft(int n, vm &f, bool inv){
vm g(n);
rep(i,n) g[i] = f[id[i]];
swap(f, g);
for(int l = n / 2, len = 1; l >= 1; l /= 2, len *= 2){
for(int i = 0; i < n; i += len * 2){
rep(j, len){
mint z_f = (inv ? root_pow[n - l * j] : root_pow[l * j]) * f[i + len + j];
g[i + j] = f[i + j] + z_f;
g[i + len + j] = f[i + j] - z_f;
}
}
swap(f, g);
}
if(inv) {
mint n_inv = mint(n).inv();
rep(i, n) f[i] *= n_inv;
}
}
public:
void dft_2D(int n, int m, vector<vm> &a, bool inv){
//簡単に、書き換える形で
//aがn×mサイズであることや、n,mが2冪であることは仮定
make_root_pow(m);
make_bit_reverse(m);
rep(i, n) dft(m, a[i], inv);
make_root_pow(n);
make_bit_reverse(n);
rep(j, m){
vm temp(n);
rep(i, n) temp[i] = a[i][j];
dft(n, temp, inv);
rep(i, n) a[i][j] = temp[i];
}
}
static vm convolution(vm &a, vm &b, int size_a = INT_MAX, int size_b = INT_MAX){
if(size_a > (int)a.size()) size_a = (int)a.size();
if(size_b > (int)b.size()) size_b = (int)b.size();
int sz = size_a + size_b - 1, n = 1;
while(sz > n) n *= 2;
vm g(n), h(n), gh(n);
copy(a.begin(), a.begin() + size_a, g.begin());
copy(b.begin(), b.begin() + size_b, h.begin());
make_root_pow(n);
make_bit_reverse(n);
dft(n, g, false);
dft(n, h, false);
rep(i, n) gh[i] = g[i] * h[i];
dft(n, gh, true);
gh.resize(sz);
return gh;
}
static vm simple_pow(vm &a, int pw){
int sz = a.size(), n = 1;
while(sz > n) n <<= 1;
n <<= 1;
make_root_pow(n); make_bit_reverse(n);
vm res(n, 0), cpy(n, 0);
res[0] = 1;
copy(ALL(a), cpy.begin());
while(pw){
dft(n, cpy, false);
if(pw&1){
dft(n, res, false);
rep(i, n) res[i] *= cpy[i];
dft(n, res, true);
reps(i, n / 2, n) res[i] = 0;
}
rep(i, n) cpy[i] *= cpy[i];
dft(n, cpy, true);
reps(i, n / 2, n) cpy[i] = 0;
pw >>= 1;
}
return res;
}
static vm polynomial_inversion(vm v){
assert(v[0].x != 0);
int n = 1;
while((int)v.size() > n) n <<= 1;
v.resize(n);
vm res(1, v[0].inv()), temp;
int sz = 1;
make_root_pow(2); make_bit_reverse(2);
while(sz < n){
sz <<= 1;
res.resize(sz<<1);
dft(sz<<1, res, false);
temp.resize(sz); copy(v.begin(), v.begin() + sz, temp.begin());
dft(sz, temp, false);
rep(i, sz) temp[i] *= res[i];
dft(sz, temp, true);
temp.resize(sz<<1); res.resize(sz<<1);
make_root_pow(sz<<1); make_bit_reverse(sz<<1);
rep(i, sz) temp[i] = - temp[i] + 2;
dft(sz<<1, temp, false);
rep(i, sz<<1) res[i] *= temp[i];
dft(sz, res, true);
}
return res;
}
};
int NTT::root = 3;
vm NTT::root_pow;
vector<int> NTT::id;
template<class T> vector<T> polynomial_inversion(int n, vector<T> &f){
//input : f = f[0] + f[1] x + f[2] x^2 + ...
//output : g = 1 / f mod x^n
//f[0] must be non_zero
//T must be have .inv() to find inverse
int m(1);
vector<T> g(n);
g[0] = f[0].inv();
NTT ntt;
while(m < n){
vm gg = ntt.convolution(g, g, m, m);
m <<= 1;
if(chmin(m, n)) gg.resize(n);
vm ggf = ntt.convolution(f, gg, m);
rep(i, m) (g[i] *= 2) -= ggf[i];
}
return g;
}
*/
int main(){
cin>>N>>M;
cout<<min(N, M)<<endl;
}
carrot46