結果
問題 | No.125 悪の花弁 |
ユーザー | NyaanNyaan |
提出日時 | 2020-12-02 14:35:31 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 78 ms / 5,000 ms |
コード長 | 17,322 bytes |
コンパイル時間 | 3,637 ms |
コンパイル使用メモリ | 324,312 KB |
実行使用メモリ | 24,932 KB |
最終ジャッジ日時 | 2024-09-13 10:11:39 |
合計ジャッジ時間 | 4,543 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 52 ms
21,000 KB |
testcase_01 | AC | 61 ms
21,420 KB |
testcase_02 | AC | 76 ms
24,428 KB |
testcase_03 | AC | 78 ms
24,308 KB |
testcase_04 | AC | 67 ms
24,932 KB |
testcase_05 | AC | 65 ms
23,908 KB |
ソースコード
/** * date : 2020-12-02 14:34:55 */ #include <immintrin.h> #include <bits/stdc++.h> using namespace std; template <uint32_t mod> struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(r * mod == 1, "invalid, r * mod != 1"); static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1, "invalid, mod % 2 == 0"); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { return pow(mod - 2); } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt<mod>(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; using mint = LazyMontgomeryModInt<1000000007>; using vm = vector<mint>; using vvm = vector<vm>; using namespace std; template <typename T> struct Binomial { vector<T> fac_, finv_, inv_; Binomial(int MAX = 0) : fac_(MAX + 10), finv_(MAX + 10), inv_(MAX + 10) { assert(T::get_mod() != 0); MAX += 9; fac_[0] = finv_[0] = inv_[0] = 1; for (int i = 1; i <= MAX; i++) fac_[i] = fac_[i - 1] * i; finv_[MAX] = fac_[MAX].inverse(); for (int i = MAX - 1; i > 0; i--) finv_[i] = finv_[i + 1] * (i + 1); for (int i = 1; i <= MAX; i++) inv_[i] = finv_[i] * fac_[i - 1]; } void extend() { int n = fac_.size(); T fac = fac_.back() * n; T inv = (-inv_[T::get_mod() % n]) * (T::get_mod() / n); T finv = finv_.back() * inv; fac_.push_back(fac); finv_.push_back(finv); inv_.push_back(inv); } T fac(int i) { while (i >= (int)fac_.size()) extend(); return fac_[i]; } T finv(int i) { while (i >= (int)finv_.size()) extend(); return finv_[i]; } T inv(int i) { while (i >= (int)inv_.size()) extend(); return inv_[i]; } T C(int n, int r) { if (n < r || r < 0) return T(0); return fac(n) * finv(n - r) * finv(r); } T C_naive(int n, int r) { if (n < r || r < 0) return T(0); T ret = T(1); r = min(r, n - r); for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--); return ret; } T P(int n, int r) { if (n < r || r < 0) return T(0); return fac(n) * finv(n - r); } T H(int n, int r) { if (n < 0 || r < 0) return T(0); return r == 0 ? 1 : C(n + r - 1, r); } }; Binomial<mint> C; using namespace std; using namespace std; // Prime Sieve {2, 3, 5, 7, 11, 13, 17, ...} vector<int> prime_enumerate(int N) { vector<bool> sieve(N / 3 + 1, 1); for (int p = 5, d = 4, i = 1, sqn = sqrt(N); p <= sqn; p += d = 6 - d, i++) { if (!sieve[i]) continue; for (int q = p * p / 3, r = d * p / 3 + (d * p % 3 == 2), s = 2 * p, qe = sieve.size(); q < qe; q += r = s - r) sieve[q] = 0; } vector<int> ret{2, 3}; for (int p = 5, d = 4, i = 1; p <= N; p += d = 6 - d, i++) if (sieve[i]) ret.push_back(p); while (!ret.empty() && ret.back() > N) ret.pop_back(); return ret; } struct divisor_transform { template <typename T> static void zeta_transform(vector<T> &a) { int N = a.size() - 1; auto sieve = prime_enumerate(N); for (auto &p : sieve) for (int k = 1; k * p <= N; ++k) a[k * p] += a[k]; } template <typename T> static void mobius_transform(T &a) { int N = a.size() - 1; auto sieve = prime_enumerate(N); for (auto &p : sieve) for (int k = N / p; k > 0; --k) a[k * p] -= a[k]; } template <typename T> static void zeta_transform(map<long long, T> &a) { for (auto p = rbegin(a); p != rend(a); p++) for (auto &x : a) { if (p->first == x.first) break; if (p->first % x.first == 0) p->second += x.second; } } template <typename T> static void mobius_transform(map<long long, T> &a) { for (auto &x : a) for (auto p = rbegin(a); p != rend(a); p++) { if (x.first == p->first) break; if (p->first % x.first == 0) p->second -= x.second; } } }; struct multiple_transform { template <typename T> static void zeta_transform(vector<T> &a) { int N = a.size() - 1; auto sieve = prime_enumerate(N); for (auto &p : sieve) for (int k = N / p; k > 0; --k) a[k] += a[k * p]; } template <typename T> static void mobius_transform(vector<T> &a) { int N = a.size() - 1; auto sieve = prime_enumerate(N); for (auto &p : sieve) for (int k = 1; k * p <= N; ++k) a[k] -= a[k * p]; } template <typename T> static void zeta_transform(map<long long, T> &a) { for (auto p1 = rbegin(a); p1 != rend(a); p1++) for (auto p2 = rbegin(a); p2 != p1; p2++) if (p2->first % p1->first == 0) p1->second += p2->second; } template <typename T> static void mobius_transform(map<long long, T> &a) { for (auto p1 = rbegin(a); p1 != rend(a); p1++) for (auto p2 = rbegin(a); p2 != p1; p2++) if (p2->first % p1->first == 0) p1->second -= p2->second; } }; /** * @brief 倍数変換・約数変換 */ // using namespace std; // intrinstic // bits // utility namespace Nyaan { using ll = long long; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; template <typename T> using V = vector<T>; template <typename T> using VV = vector<vector<T>>; using vi = vector<int>; using vl = vector<long long>; using vd = V<double>; using vs = V<string>; using vvi = vector<vector<int>>; using vvl = vector<vector<long long>>; template <typename T, typename U> struct P : pair<T, U> { template <typename... Args> P(Args... args) : pair<T, U>(args...) {} using pair<T, U>::first; using pair<T, U>::second; T &x() { return first; } const T &x() const { return first; } U &y() { return second; } const U &y() const { return second; } P &operator+=(const P &r) { first += r.first; second += r.second; return *this; } P &operator-=(const P &r) { first -= r.first; second -= r.second; return *this; } P &operator*=(const P &r) { first *= r.first; second *= r.second; return *this; } P operator+(const P &r) const { return P(*this) += r; } P operator-(const P &r) const { return P(*this) -= r; } P operator*(const P &r) const { return P(*this) *= r; } }; using pl = P<ll, ll>; using pi = P<int, int>; using vp = V<pl>; constexpr int inf = 1001001001; constexpr long long infLL = 4004004004004004004LL; template <typename T> int sz(const T &t) { return t.size(); } template <typename T, size_t N> void mem(T (&a)[N], int c) { memset(a, c, sizeof(T) * N); } template <typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template <typename T> int lb(const vector<T> &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template <typename T> int ub(const vector<T> &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } constexpr long long TEN(int n) { long long ret = 1, x = 10; for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1); return ret; } template <typename T, typename U> pair<T, U> mkp(const T &t, const U &u) { return make_pair(t, u); } template <typename T> vector<T> mkrui(const vector<T> &v, bool rev = false) { vector<T> ret(v.size() + 1); if (rev) { for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1]; } else { for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; } return ret; }; template <typename T> vector<T> mkuni(const vector<T> &v) { vector<T> ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template <typename F> vector<int> mkord(int N, F f) { vector<int> ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template <typename T> vector<T> reord(const vector<T> &v, const vector<T> &ord) { int N = v.size(); vector<T> ret(N); for (int i = 0; i < N; i++) ret[i] = v[ord[i]]; return ret; }; template <typename T = int> vector<T> mkiota(int N) { vector<T> ret(N); iota(begin(ret), end(ret), 0); return ret; } template <typename T> vector<int> mkinv(vector<T> &v, int max_val = -1) { if (max_val < (int)v.size()) max_val = v.size() - 1; vector<int> inv(max_val + 1, -1); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } } // namespace Nyaan // bit operation namespace Nyaan { __attribute__((target("popcnt"))) inline int popcnt(const u64 &a) { return _mm_popcnt_u64(a); } __attribute__((target("bmi"))) inline int botbit(const u64 &a) { return _tzcnt_u64(a); } __attribute__((target("bmi"))) inline int ctz(const u64 &a) { return _tzcnt_u64(a); } __attribute__((target("lzcnt"))) inline int topbit(const u64 &a) { return 63 - _lzcnt_u64(a); } __attribute__((target("lzcnt"))) inline int clz64(const u64 &a) { return _lzcnt_u64(a); } template <typename T> inline int gbit(const T &a, int i) { return (a >> i) & 1; } template <typename T> inline void sbit(T &a, int i, bool b) { a ^= (gbit(a, i) == b ? 0 : (T(b) << i)); } constexpr long long PW(int n) { return 1LL << n; } constexpr long long MSK(int n) { return (1LL << n) - 1; } } // namespace Nyaan // inout namespace Nyaan { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v) { for (auto &x : v) is >> x; return is; } void in() {} template <typename T, class... U> void in(T &t, U &... u) { cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &... u) { cout << t; if (sizeof...(u)) cout << sep; out(u...); } void outr() {} template <typename T, class... U, char sep = ' '> void outr(const T &t, const U &... u) { cout << t; outr(u...); } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; } // namespace Nyaan // debug namespace DebugImpl { template <typename U, typename = void> struct is_specialize : false_type {}; template <typename U> struct is_specialize< U, typename conditional<false, typename U::iterator, void>::type> : true_type {}; template <typename U> struct is_specialize< U, typename conditional<false, decltype(U::first), void>::type> : true_type {}; template <typename U> struct is_specialize<U, enable_if_t<is_integral<U>::value, void>> : true_type { }; void dump(const char& t) { cerr << t; } void dump(const string& t) { cerr << t; } template <typename U, enable_if_t<!is_specialize<U>::value, nullptr_t> = nullptr> void dump(const U& t) { cerr << t; } template <typename T> void dump(const T& t, enable_if_t<is_integral<T>::value>* = nullptr) { string res; if (t == Nyaan::inf) res = "inf"; if (is_signed<T>::value) if (t == -Nyaan::inf) res = "-inf"; if (sizeof(T) == 8) { if (t == Nyaan::infLL) res = "inf"; if (is_signed<T>::value) if (t == -Nyaan::infLL) res = "-inf"; } if (res.empty()) res = to_string(t); cerr << res; } template <typename T, typename U> void dump(const pair<T, U>&); template <typename T> void dump(const pair<T*, int>&); template <typename T> void dump(const T& t, enable_if_t<!is_void<typename T::iterator>::value>* = nullptr) { cerr << "[ "; for (auto it = t.begin(); it != t.end();) { dump(*it); cerr << (++it == t.end() ? " ]" : ", "); } } template <typename T, typename U> void dump(const pair<T, U>& t) { cerr << "( "; dump(t.first); cerr << ", "; dump(t.second); cerr << " )"; } template <typename T> void dump(const pair<T*, int>& t) { cerr << "[ "; for (int i = 0; i < t.second; i++) { dump(t.first[i]); cerr << (i == t.second - 1 ? " ]" : ", "); } } void trace() { cerr << endl; } template <typename Head, typename... Tail> void trace(Head&& head, Tail&&... tail) { cerr << " "; dump(head); if (sizeof...(tail) != 0) cerr << ","; trace(forward<Tail>(tail)...); } } // namespace DebugImpl using DebugImpl::trace; #ifdef NyaanDebug #define trc(...) \ do { \ cerr << "## " << #__VA_ARGS__ << " = "; \ DebugImpl::trace(__VA_ARGS__); \ } while (0) #else #define trc(...) #endif // macro #define each(x, v) for (auto&& x : v) #define all(v) (v).begin(), (v).end() #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--) #define repc(i, a, cond) for (long long i = (a); (cond); i++) #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define inc(...) \ char __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define die(...) \ do { \ Nyaan::out(__VA_ARGS__); \ return; \ } while (0) namespace Nyaan { void solve(); } int main() { Nyaan::solve(); } using namespace Nyaan; void Nyaan::solve() { ini(K); vi c(K); in(c); int S = accumulate(all(c), 0LL); vi ds; repc(i, 1, i * i <= S) { if (S % i == 0) { ds.push_back(i); if (i * i != S) ds.push_back(S / i); } } sort(all(ds)); int g = 0; each(cc, c) g = __gcd(g, cc); mint ans1, ans2; { vm a(S + 1); each(d, ds) { int sd = S / d; if (g % sd != 0) { a[d] = 0; continue; } mint n = 1; each(cc, c) n *= C.finv(cc / sd); n *= C.fac(d); a[d] = n; } auto b = a; divisor_transform::mobius_transform(a); each(d, ds) ans1 += a[d] * C.inv(d); divisor_transform::zeta_transform(a); assert(a == b); } { map<ll,mint> a; each(d, ds) { int sd = S / d; if (g % sd != 0) { a[d] = 0; continue; } mint n = 1; each(cc, c) n *= C.finv(cc / sd); n *= C.fac(d); a[d] = n; } auto b = a; divisor_transform::mobius_transform(a); each(d, ds) ans2 += a[d] * C.inv(d); divisor_transform::zeta_transform(a); assert(a == b); } assert(ans1 == ans2); out(ans1); }