結果
| 問題 |
No.1301 Strange Graph Shortest Path
|
| コンテスト | |
| ユーザー |
EmKjp
|
| 提出日時 | 2020-12-02 21:25:36 |
| 言語 | C#(csc) (csc 3.9.0) |
| 結果 |
AC
|
| 実行時間 | 620 ms / 3,000 ms |
| コード長 | 12,081 bytes |
| コンパイル時間 | 1,066 ms |
| コンパイル使用メモリ | 118,560 KB |
| 実行使用メモリ | 78,296 KB |
| 最終ジャッジ日時 | 2024-09-13 10:45:01 |
| 合計ジャッジ時間 | 19,901 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 33 |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.Globalization;
using System.IO;
using System.Text;
using System.Linq;
using E = System.Linq.Enumerable;
using Weight = System.Int64;
using System.Threading;
internal partial class Solver {
public void Run() {
var n = ni();
var m = ni();
var D = new PrimalDualWithDijkstra(n);
for (int i = 0; i < m; i++) {
var u = ni() - 1;
var v = ni() - 1;
var c = ni();
var d = ni();
D.AddEdge(u, v, 1, c);
D.AddEdge(u, v, 1, d);
D.AddEdge(v, u, 1, c);
D.AddEdge(v, u, 1, d);
}
cout.WriteLine(D.Run(0, n - 1, 2).TotalCost);
}
}
public class MinCostFlowResult {
public Weight TotalCost;
public Weight TotalFlow;
}
public class PriorityQueue<T> {
private T[] _array = new T[128];
private int _size = 0;
private readonly Comparison<T> _compare;
public PriorityQueue() {
_compare = Comparer<T>.Default.Compare;
}
public PriorityQueue(Comparison<T> comp) {
_compare = comp;
}
public int Count { get { return _size; } }
private void Swap(int a, int b) {
var t = _array[a];
_array[a] = _array[b];
_array[b] = t;
}
private void Expand() {
var newlist = new T[_array.Length << 1];
Array.Copy(_array, newlist, _array.Length);
_array = newlist;
}
public bool Any() {
return _size > 0;
}
public void Enqueue(T newValue) {
int pos = ++_size;
if (_size >= _array.Length) {
Expand();
}
_array[pos] = newValue;
while (pos > 1) {
int parent = pos >> 1;
if (_compare(_array[parent], _array[pos]) > 0) {
Swap(parent, pos);
pos = parent;
} else {
break;
}
}
}
public T Peek() {
return _array[1];
}
public T Dequeue() {
var top = _array[1];
int pos = 1;
_array[pos] = _array[_size--];
while ((pos << 1) <= _size) {
int left = pos << 1;
int right = left | 1;
int next = left;
if (right <= _size && _compare(_array[left], _array[right]) > 0) {
next = right;
}
if (_compare(_array[pos], _array[next]) > 0) {
Swap(next, pos);
pos = next;
} else {
break;
}
}
return top;
}
};
/// <summary>
/// Cost can be negative.
/// O(FVE)
/// </summary>
public class PrimalDualWithDijkstra { // with dijkstra
private readonly int N;
private readonly List<List<Edge>> adjacents;
private readonly Weight[] _distance;
private readonly Weight[] _potential;
private readonly Edge[] _prevEdges;
private readonly PriorityQueue<Data> _queue;
public class Edge {
public int From, To;
public Weight Flow, Capacity, Cost;
public Edge Reverse;
public Edge(int from, int to, Weight capacity, Weight cost, Weight flow = 0) {
From = from;
To = to;
Cost = cost;
Flow = flow;
Capacity = capacity;
}
public Weight Residue {
get {
return Capacity - Flow;
}
}
}
public PrimalDualWithDijkstra(int n) {
N = n;
adjacents = new List<List<Edge>>();
for (int i = 0; i < n; i++) {
adjacents.Add(new List<Edge>());
}
_distance = new Weight[N];
_potential = new Weight[N];
_prevEdges = new Edge[N];
_queue = new PriorityQueue<Data>((d1, d2) => d1.Cost.CompareTo(d2.Cost));
}
public IEnumerable<Edge> GetEdges() {
return adjacents.SelectMany(a => a);
}
public void AddEdge(int from, int to, Weight capacity, Weight cost) {
var e = new Edge(from, to, capacity, cost);
adjacents[from].Add(e);
}
struct Data {
public int Position;
public Weight Cost;
}
private Edge[] FindShortestPathTree(int source) {
Array.Clear(_prevEdges, 0, _prevEdges.Length);
for (int i = 0; i < N; i++) {
_distance[i] = Weight.MaxValue;
}
_distance[source] = 0;
_queue.Enqueue(new Data { Position = source, Cost = 0 });
while (_queue.Count > 0) {
var current = _queue.Dequeue();
if (current.Cost > _distance[current.Position]) continue;
foreach (var edge in adjacents[current.Position]) {
if (edge.Residue > 0) {
var newCost = _distance[edge.From] + edge.Cost + _potential[edge.From] - _potential[edge.To];
if (_distance[edge.To] > newCost) {
_distance[edge.To] = newCost;
_prevEdges[edge.To] = edge;
_queue.Enqueue(new Data { Position = edge.To, Cost = newCost });
}
}
}
}
for (int i = 0; i < N; i++) {
_potential[i] += _distance[i];
}
return _prevEdges;
}
public MinCostFlowResult Run(int source, int sink, Weight flow) {
Weight totalCost = 0;
Weight totalFlow = 0;
Array.Clear(_potential, 0, _potential.Length);
while (totalFlow < flow) {
var prevEdges = FindShortestPathTree(source);
if (prevEdges[sink] == null) {
break;
}
long incrementalFlow = flow - totalFlow;
for (var e = prevEdges[sink]; e != null; e = prevEdges[e.From]) {
incrementalFlow = Math.Min(incrementalFlow, e.Residue);
}
for (var e = prevEdges[sink]; e != null; e = prevEdges[e.From]) {
if (e.Reverse == null) {
var reverseEdge = new Edge(e.To, e.From, 0, -e.Cost) {
Reverse = e
};
e.Reverse = reverseEdge;
adjacents[e.To].Add(reverseEdge);
}
totalCost += e.Cost * incrementalFlow;
e.Flow += incrementalFlow;
e.Reverse.Flow -= incrementalFlow;
}
totalFlow += incrementalFlow;
}
return new MinCostFlowResult { TotalCost = totalCost, TotalFlow = totalFlow };
}
}
// PREWRITEN CODE BEGINS FROM HERE
static public class StringExtensions {
static public string JoinToString<T>(this IEnumerable<T> source, string separator = " ") {
return string.Join(separator, source);
}
}
internal partial class Solver : Scanner {
static readonly int? StackSizeInMebiByte = null; //50;
public static void StartAndJoin(Action action, int maxStackSize) {
var thread = new Thread(new ThreadStart(action), maxStackSize);
thread.Start();
thread.Join();
}
public static void Main() {
#if LOCAL
byte[] inputBuffer = new byte[1000000];
var inputStream = Console.OpenStandardInput(inputBuffer.Length);
using (var reader = new StreamReader(inputStream, Console.InputEncoding, false, inputBuffer.Length)) {
Console.SetIn(reader);
new Solver(Console.In, Console.Out).Run();
}
#else
Console.SetOut(new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false });
if (StackSizeInMebiByte.HasValue) {
StartAndJoin(() => new Solver(Console.In, Console.Out).Run(), StackSizeInMebiByte.Value * 1024 * 1024);
} else {
new Solver(Console.In, Console.Out).Run();
}
Console.Out.Flush();
#endif
}
#pragma warning disable IDE0052
private readonly TextReader cin;
private readonly TextWriter cout;
private readonly TextWriter cerr;
#pragma warning restore IDE0052
public Solver(TextReader reader, TextWriter writer)
: base(reader) {
cin = reader;
cout = writer;
cerr = Console.Error;
}
public Solver(string input, TextWriter writer)
: this(new StringReader(input), writer) {
}
#pragma warning disable IDE1006
#pragma warning disable IDE0051
private int ni() { return NextInt(); }
private int[] ni(int n) { return NextIntArray(n); }
private long nl() { return NextLong(); }
private long[] nl(int n) { return NextLongArray(n); }
private double nd() { return NextDouble(); }
private double[] nd(int n) { return NextDoubleArray(n); }
private string ns() { return Next(); }
private string[] ns(int n) { return NextArray(n); }
#pragma warning restore IDE1006
#pragma warning restore IDE0051
}
#if DEBUG
internal static class LinqPadExtension {
public static string TextDump<T>(this T obj) {
if (obj is IEnumerable) return (obj as IEnumerable).Cast<object>().JoinToString().Dump();
else return obj.ToString().Dump();
}
public static T Dump<T>(this T obj) {
return LINQPad.Extensions.Dump(obj);
}
}
#endif
public class Scanner {
private readonly TextReader Reader;
private readonly CultureInfo ci = CultureInfo.InvariantCulture;
private readonly char[] buffer = new char[2 * 1024];
private int cursor = 0, length = 0;
private string Token;
private readonly StringBuilder sb = new StringBuilder(1024);
public Scanner()
: this(Console.In) {
}
public Scanner(TextReader reader) {
Reader = reader;
}
public int NextInt() { return checked((int)NextLong()); }
public long NextLong() {
var s = Next();
long r = 0;
int i = 0;
bool negative = false;
if (s[i] == '-') {
negative = true;
i++;
}
for (; i < s.Length; i++) {
r = r * 10 + (s[i] - '0');
#if DEBUG
if (!char.IsDigit(s[i])) throw new FormatException();
#endif
}
return negative ? -r : r;
}
public double NextDouble() { return double.Parse(Next(), ci); }
public string[] NextArray(int size) {
string[] array = new string[size];
for (int i = 0; i < size; i++) {
array[i] = Next();
}
return array;
}
public int[] NextIntArray(int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++) {
array[i] = NextInt();
}
return array;
}
public long[] NextLongArray(int size) {
long[] array = new long[size];
for (int i = 0; i < size; i++) {
array[i] = NextLong();
}
return array;
}
public double[] NextDoubleArray(int size) {
double[] array = new double[size];
for (int i = 0; i < size; i++) {
array[i] = NextDouble();
}
return array;
}
public string Next() {
if (Token == null) {
if (!StockToken()) {
throw new Exception();
}
}
var token = Token;
Token = null;
return token;
}
public bool HasNext() {
if (Token != null) {
return true;
}
return StockToken();
}
private bool StockToken() {
while (true) {
sb.Clear();
while (true) {
if (cursor >= length) {
cursor = 0;
if ((length = Reader.Read(buffer, 0, buffer.Length)) <= 0) {
break;
}
}
var c = buffer[cursor++];
if (33 <= c && c <= 126) {
sb.Append(c);
} else {
if (sb.Length > 0) break;
}
}
if (sb.Length > 0) {
Token = sb.ToString();
return true;
}
return false;
}
}
}
EmKjp