結果

問題 No.1306 Exactly 2 Digits
ユーザー torisasami4torisasami4
提出日時 2020-12-04 14:12:04
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 151 ms / 2,000 ms
コード長 10,796 bytes
コンパイル時間 2,031 ms
コンパイル使用メモリ 179,656 KB
実行使用メモリ 51,624 KB
平均クエリ数 1237.78
最終ジャッジ日時 2024-07-17 09:27:43
合計ジャッジ時間 17,055 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 35 ms
51,128 KB
testcase_01 AC 33 ms
51,268 KB
testcase_02 AC 33 ms
50,952 KB
testcase_03 AC 33 ms
50,704 KB
testcase_04 AC 33 ms
51,236 KB
testcase_05 AC 33 ms
50,836 KB
testcase_06 AC 34 ms
51,104 KB
testcase_07 AC 37 ms
50,856 KB
testcase_08 AC 33 ms
51,140 KB
testcase_09 AC 33 ms
50,916 KB
testcase_10 AC 32 ms
50,740 KB
testcase_11 AC 34 ms
50,832 KB
testcase_12 AC 34 ms
51,436 KB
testcase_13 AC 36 ms
51,220 KB
testcase_14 AC 34 ms
51,000 KB
testcase_15 AC 34 ms
51,052 KB
testcase_16 AC 34 ms
51,372 KB
testcase_17 AC 34 ms
50,868 KB
testcase_18 AC 34 ms
51,216 KB
testcase_19 AC 33 ms
50,908 KB
testcase_20 AC 34 ms
50,944 KB
testcase_21 AC 34 ms
50,964 KB
testcase_22 AC 32 ms
50,704 KB
testcase_23 AC 34 ms
50,764 KB
testcase_24 AC 35 ms
51,016 KB
testcase_25 AC 34 ms
51,080 KB
testcase_26 AC 34 ms
51,328 KB
testcase_27 AC 33 ms
51,048 KB
testcase_28 AC 34 ms
51,112 KB
testcase_29 AC 33 ms
51,624 KB
testcase_30 AC 33 ms
51,404 KB
testcase_31 AC 34 ms
51,128 KB
testcase_32 AC 34 ms
51,468 KB
testcase_33 AC 35 ms
51,228 KB
testcase_34 AC 35 ms
51,544 KB
testcase_35 AC 33 ms
51,128 KB
testcase_36 AC 34 ms
51,020 KB
testcase_37 AC 34 ms
51,164 KB
testcase_38 AC 34 ms
50,868 KB
testcase_39 AC 35 ms
51,080 KB
testcase_40 AC 34 ms
50,704 KB
testcase_41 AC 34 ms
50,616 KB
testcase_42 AC 33 ms
50,868 KB
testcase_43 AC 36 ms
51,060 KB
testcase_44 AC 36 ms
50,768 KB
testcase_45 AC 35 ms
50,708 KB
testcase_46 AC 37 ms
50,828 KB
testcase_47 AC 37 ms
51,296 KB
testcase_48 AC 39 ms
51,072 KB
testcase_49 AC 39 ms
51,240 KB
testcase_50 AC 39 ms
51,124 KB
testcase_51 AC 40 ms
51,312 KB
testcase_52 AC 42 ms
51,156 KB
testcase_53 AC 45 ms
51,132 KB
testcase_54 AC 42 ms
50,960 KB
testcase_55 AC 45 ms
50,652 KB
testcase_56 AC 48 ms
50,768 KB
testcase_57 AC 48 ms
51,128 KB
testcase_58 AC 50 ms
50,640 KB
testcase_59 AC 50 ms
50,764 KB
testcase_60 AC 58 ms
51,084 KB
testcase_61 AC 59 ms
51,080 KB
testcase_62 AC 58 ms
50,976 KB
testcase_63 AC 62 ms
51,112 KB
testcase_64 AC 61 ms
50,900 KB
testcase_65 AC 64 ms
51,596 KB
testcase_66 AC 69 ms
51,284 KB
testcase_67 AC 71 ms
51,052 KB
testcase_68 AC 70 ms
51,052 KB
testcase_69 AC 74 ms
50,960 KB
testcase_70 AC 76 ms
51,188 KB
testcase_71 AC 77 ms
51,020 KB
testcase_72 AC 79 ms
50,940 KB
testcase_73 AC 78 ms
51,044 KB
testcase_74 AC 88 ms
51,048 KB
testcase_75 AC 85 ms
51,132 KB
testcase_76 AC 95 ms
50,820 KB
testcase_77 AC 100 ms
50,936 KB
testcase_78 AC 108 ms
50,940 KB
testcase_79 AC 118 ms
51,020 KB
testcase_80 AC 118 ms
50,972 KB
testcase_81 AC 99 ms
51,112 KB
testcase_82 AC 123 ms
51,224 KB
testcase_83 AC 124 ms
51,228 KB
testcase_84 AC 135 ms
51,296 KB
testcase_85 AC 144 ms
50,708 KB
testcase_86 AC 118 ms
50,724 KB
testcase_87 AC 135 ms
51,196 KB
testcase_88 AC 151 ms
51,112 KB
testcase_89 AC 128 ms
51,060 KB
testcase_90 AC 111 ms
51,100 KB
testcase_91 AC 124 ms
51,332 KB
testcase_92 AC 112 ms
50,748 KB
testcase_93 AC 132 ms
51,172 KB
testcase_94 AC 113 ms
51,168 KB
testcase_95 AC 119 ms
51,296 KB
testcase_96 AC 109 ms
51,248 KB
testcase_97 AC 111 ms
50,936 KB
testcase_98 AC 107 ms
51,080 KB
testcase_99 AC 123 ms
50,932 KB
testcase_100 AC 125 ms
51,088 KB
testcase_101 AC 134 ms
51,272 KB
testcase_102 AC 111 ms
50,900 KB
testcase_103 AC 118 ms
51,068 KB
testcase_104 AC 119 ms
51,156 KB
testcase_105 AC 120 ms
50,768 KB
testcase_106 AC 107 ms
50,968 KB
testcase_107 AC 122 ms
50,912 KB
testcase_108 AC 114 ms
50,884 KB
testcase_109 AC 138 ms
51,288 KB
testcase_110 AC 112 ms
51,372 KB
testcase_111 AC 115 ms
51,176 KB
testcase_112 AC 106 ms
50,908 KB
testcase_113 AC 143 ms
51,076 KB
testcase_114 AC 141 ms
50,812 KB
testcase_115 AC 120 ms
50,940 KB
testcase_116 AC 148 ms
50,788 KB
testcase_117 AC 125 ms
51,168 KB
testcase_118 AC 134 ms
50,960 KB
testcase_119 AC 117 ms
51,332 KB
testcase_120 AC 108 ms
51,116 KB
testcase_121 AC 128 ms
50,996 KB
testcase_122 AC 125 ms
50,896 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function 'int main()':
main.cpp:469:43: warning: 'ma' may be used uninitialized [-Wmaybe-uninitialized]
  469 |                 ans[1] = -mi + n * (n - 1 - ma);
      |                                    ~~~~~~~^~~~~
main.cpp:447:23: note: 'ma' was declared here
  447 |         int mi = 1e9, ma, s = 1e9, e, f;
      |                       ^~
main.cpp:468:9: warning: 'f' may be used uninitialized [-Wmaybe-uninitialized]
  468 |         if(f){ // miが1の位
      |         ^~
main.cpp:447:39: note: 'f' was declared here
  447 |         int mi = 1e9, ma, s = 1e9, e, f;
      |                                       ^
main.cpp:470:24: warning: 't' may be used uninitialized [-Wmaybe-uninitialized]
  470 |                 ans[t] = n * (n - 1);
      |                 ~~~~~~~^~~~~~~~~~~~~
main.cpp:464:13: note: 't' was declared here
  464 |         int t, p2, q2;
      |             ^

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pb(x) push_back(x)
#define mp(a, b) make_pair(a, b)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define lscan(x) scanf("%I64d", &x)
#define lprint(x) printf("%I64d", x)
#define rep(i, n) for (ll i = 0; i < (n); i++)
#define rep2(i, n) for (ll i = n - 1; i >= 0; i--)
template <class T>
using rque = priority_queue<T, vector<T>, greater<T>>;
const ll mod = 998244353;

ll gcd(ll a, ll b)
{
	ll c = a % b;
	while (c != 0)
	{
		a = b;
		b = c;
		c = a % b;
	}
	return b;
}

long long extGCD(long long a, long long b, long long &x, long long &y)
{
	if (b == 0)
	{
		x = 1;
		y = 0;
		return a;
	}
	long long d = extGCD(b, a % b, y, x);
	y -= a / b * x;
	return d;
}

struct UnionFind
{
	vector<ll> data;

	UnionFind(int sz)
	{
		data.assign(sz, -1);
	}

	bool unite(int x, int y)
	{
		x = find(x), y = find(y);
		if (x == y)
			return (false);
		if (data[x] > data[y])
			swap(x, y);
		data[x] += data[y];
		data[y] = x;
		return (true);
	}

	int find(int k)
	{
		if (data[k] < 0)
			return (k);
		return (data[k] = find(data[k]));
	}

	ll size(int k)
	{
		return (-data[find(k)]);
	}
};

ll M = 1000000007;

vector<ll> fac(2000011);  //n!(mod M)
vector<ll> ifac(2000011); //k!^{M-2} (mod M)

ll mpow(ll x, ll n)
{
	ll ans = 1;
	while (n != 0)
	{
		if (n & 1)
			ans = ans * x % M;
		x = x * x % M;
		n = n >> 1;
	}
	return ans;
}
ll mpow2(ll x, ll n, ll mod)
{
	ll ans = 1;
	while (n != 0)
	{
		if (n & 1)
			ans = ans * x % mod;
		x = x * x % mod;
		n = n >> 1;
	}
	return ans;
}
void setcomb()
{
	fac[0] = 1;
	ifac[0] = 1;
	for (ll i = 0; i < 2000010; i++)
	{
		fac[i + 1] = fac[i] * (i + 1) % M; // n!(mod M)
	}
	ifac[2000010] = mpow(fac[2000010], M - 2);
	for (ll i = 2000010; i > 0; i--)
	{
		ifac[i - 1] = ifac[i] * i % M;
	}
}
ll comb(ll a, ll b)
{
	if (a == 0 && b == 0)
		return 1;
	if (a < b || a < 0)
		return 0;
	ll tmp = ifac[a - b] * ifac[b] % M;
	return tmp * fac[a] % M;
}
ll perm(ll a, ll b)
{
	if (a == 0 && b == 0)
		return 1;
	if (a < b || a < 0)
		return 0;
	return fac[a] * ifac[a - b] % M;
}
long long modinv(long long a)
{
	long long b = M, u = 1, v = 0;
	while (b)
	{
		long long t = a / b;
		a -= t * b;
		swap(a, b);
		u -= t * v;
		swap(u, v);
	}
	u %= M;
	if (u < 0)
		u += M;
	return u;
}
ll modinv2(ll a, ll mod)
{
	ll b = mod, u = 1, v = 0;
	while (b)
	{
		ll t = a / b;
		a -= t * b;
		swap(a, b);
		u -= t * v;
		swap(u, v);
	}
	u %= mod;
	if (u < 0)
		u += mod;
	return u;
}

template <int mod>
struct ModInt
{
	int x;

	ModInt() : x(0) {}

	ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

	ModInt &operator+=(const ModInt &p)
	{
		if ((x += p.x) >= mod)
			x -= mod;
		return *this;
	}

	ModInt &operator-=(const ModInt &p)
	{
		if ((x += mod - p.x) >= mod)
			x -= mod;
		return *this;
	}

	ModInt &operator*=(const ModInt &p)
	{
		x = (int)(1LL * x * p.x % mod);
		return *this;
	}

	ModInt &operator/=(const ModInt &p)
	{
		*this *= p.inverse();
		return *this;
	}

	ModInt operator-() const { return ModInt(-x); }

	ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }

	ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }

	ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }

	ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }

	bool operator==(const ModInt &p) const { return x == p.x; }

	bool operator!=(const ModInt &p) const { return x != p.x; }

	ModInt inverse() const
	{
		int a = x, b = mod, u = 1, v = 0, t;
		while (b > 0)
		{
			t = a / b;
			swap(a -= t * b, b);
			swap(u -= t * v, v);
		}
		return ModInt(u);
	}

	ModInt pow(int64_t n) const
	{
		ModInt ret(1), mul(x);
		while (n > 0)
		{
			if (n & 1)
				ret *= mul;
			mul *= mul;
			n >>= 1;
		}
		return ret;
	}

	friend ostream &operator<<(ostream &os, const ModInt &p)
	{
		return os << p.x;
	}

	friend istream &operator>>(istream &is, ModInt &a)
	{
		int64_t t;
		is >> t;
		a = ModInt<mod>(t);
		return (is);
	}

	static int get_mod() { return mod; }
};

using mint = ModInt<mod>;

typedef vector<vector<mint>> Matrix;

Matrix mul(Matrix a, Matrix b)
{
	assert(a[0].size() == b.size());
	int i, j, k;
	int n = a.size(), m = b[0].size(), l = a[0].size();
	Matrix c(n, vector<mint>(m));
	for (i = 0; i < n; i++)
		for (k = 0; k < l; k++)
			for (j = 0; j < m; j++)
				c[i][j] += a[i][k] * b[k][j];
	return c;
}

Matrix mat_pow(Matrix x, ll n)
{
	ll k = x.size();
	Matrix ans(k, vector<mint>(k, 0));
	for (int i = 0; i < k; i++)
		ans[i][i] = 1;
	while (n != 0)
	{
		if (n & 1)
			ans = mul(ans, x);
		x = mul(x, x);
		n = n >> 1;
	}
	return ans;
}

template <int mod>
struct NumberTheoreticTransform
{

    vector<int> rev, rts;
    int base, max_base, root;

    NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1}
    {
        assert(mod >= 3 && mod % 2 == 1);
        auto tmp = mod - 1;
        max_base = 0;
        while (tmp % 2 == 0)
            tmp >>= 1, max_base++;
        root = 2;
        while (mod_pow(root, (mod - 1) >> 1) == 1)
            ++root;
        assert(mod_pow(root, mod - 1) == 1);
        root = mod_pow(root, (mod - 1) >> max_base);
    }

    inline int mod_pow(int x, int n)
    {
        int ret = 1;
        while (n > 0)
        {
            if (n & 1)
                ret = mul(ret, x);
            x = mul(x, x);
            n >>= 1;
        }
        return ret;
    }

    inline int inverse(int x)
    {
        return mod_pow(x, mod - 2);
    }

    inline unsigned add(unsigned x, unsigned y)
    {
        x += y;
        if (x >= mod)
            x -= mod;
        return x;
    }

    inline unsigned mul(unsigned a, unsigned b)
    {
        return 1ull * a * b % (unsigned long long)mod;
    }

    void ensure_base(int nbase)
    {
        if (nbase <= base)
            return;
        rev.resize(1 << nbase);
        rts.resize(1 << nbase);
        for (int i = 0; i < (1 << nbase); i++)
        {
            rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
        }
        assert(nbase <= max_base);
        while (base < nbase)
        {
            int z = mod_pow(root, 1 << (max_base - 1 - base));
            for (int i = 1 << (base - 1); i < (1 << base); i++)
            {
                rts[i << 1] = rts[i];
                rts[(i << 1) + 1] = mul(rts[i], z);
            }
            ++base;
        }
    }

    void ntt(vector<int> &a)
    {
        const int n = (int)a.size();
        assert((n & (n - 1)) == 0);
        int zeros = __builtin_ctz(n);
        ensure_base(zeros);
        int shift = base - zeros;
        for (int i = 0; i < n; i++)
        {
            if (i < (rev[i] >> shift))
            {
                swap(a[i], a[rev[i] >> shift]);
            }
        }
        for (int k = 1; k < n; k <<= 1)
        {
            for (int i = 0; i < n; i += 2 * k)
            {
                for (int j = 0; j < k; j++)
                {
                    int z = mul(a[i + j + k], rts[j + k]);
                    a[i + j + k] = add(a[i + j], mod - z);
                    a[i + j] = add(a[i + j], z);
                }
            }
        }
    }

    vector<int> multiply(vector<int> a, vector<int> b)
    {
        int need = a.size() + b.size() - 1;
        int nbase = 1;
        while ((1 << nbase) < need)
            nbase++;
        ensure_base(nbase);
        int sz = 1 << nbase;
        a.resize(sz, 0);
        b.resize(sz, 0);
        ntt(a);
        ntt(b);
        int inv_sz = inverse(sz);
        for (int i = 0; i < sz; i++)
        {
            a[i] = mul(a[i], mul(b[i], inv_sz));
        }
        reverse(a.begin() + 1, a.end());
        ntt(a);
        a.resize(need);
        return a;
    }

    vector<int> pol_pow(vector<int> a, ll n)
    {
        vector<int> ans(1, 1);
        int k = a.size();
        while (n != 0)
        {
            if (n & 1){
                ans = multiply(ans, a);
                ans.resize(k);
            }
            a = multiply(a, a);
            a.resize(k);
            n = n >> 1;
        }
        return ans;
    }
};

int main()
{
	int n;
	cin>>n;
	int cnt[3 * n] = {}, p[n*n-n+10], q[n*n-n+10];
	for (int i = 1; i <= n * n - n; i++){
		cout << "? " << i << " 1" << endl;
		cin >> p[i] >> q[i];
		cnt[p[i]+n]++, cnt[q[i]+n]++;
	}
	int ans[n * n - n + 10];
	rep(i, n * n - n + 10) ans[i] = -1;
	int mi = 1e9, ma, s = 1e9, e, f;
	rep(i,3*n){
		if(cnt[i]&&mi>1e8){
			mi = i - n;
			if(cnt[i] == n-1)
				f = 1;
			else
				f = 0;
		}
		if(cnt[i] == 2*n-1){
			e = i - n;
			if(s>1e8)
				s = i - n;
		}
		if(cnt[i])
			ma = i - n;
	}
	int t, p2, q2;
	for (int i = 1; i <= n * n - n; i++)
		if(p[i]==mi&&q[i]==ma)
			t = i;
	if(f){ // miが1の位
		ans[1] = -mi + n * (n - 1 - ma);
		ans[t] = n * (n - 1);
		for (int i = 1; i <= n * n - n; i++){
			if(ans[i] == -1){
				if(cnt[p[i] + n] != 2*n-1){
					if(cnt[p[i] + n] == n-1)
						ans[i] = (ans[1] % n + p[i]) + n * (ans[1] / n + q[i]);
					else
						ans[i] = (ans[1] % n + q[i]) + n * (ans[1] / n + p[i]);
				}
				else if(cnt[q[i] + n] != 2*n-1){
					if(cnt[q[i] + n] == n)
						ans[i] = (ans[1] % n + p[i]) + n * (ans[1] / n + q[i]);
					else
						ans[i] = (ans[1] % n + q[i]) + n * (ans[1] / n + p[i]);
				}
				else if(p[i] == q[i]){
					ans[i] = (ans[1] % n + p[i]) + n * (ans[1] / n + q[i]);
				}
				else{
					cout << "? " << i << " " << t << endl;
					cin >> p2 >> q2;
					ans[i] = n * (n - 1 + p2) + q2;
					for (int j = i + 1; j <= n * n - n; j++){
						if(p[i]==p[j]&&q[i]==q[j]){
							ans[j] = n * (ans[1] / n + ans[i] % n - ans[1] % n) + (ans[1] % n + ans[i] / n - ans[1] / n);
							break;
						}
					}
				}
			}
		}
	}
	else{ // miがnの位
		ans[1] = n * (1 - mi) + (n - 1 - ma);
		ans[t] = 2 * n - 1;
		for (int i = 1; i <= n * n - n; i++){
			if(ans[i] == -1){
				if(cnt[p[i] + n] != 2*n-1){
					if(cnt[p[i] + n] == n-1)
						ans[i] = (ans[1] % n + p[i]) + n * (ans[1] / n + q[i]);
					else
						ans[i] = (ans[1] % n + q[i]) + n * (ans[1] / n + p[i]);
				}
				else if(cnt[q[i] + n] != 2*n-1){
					if(cnt[q[i] + n] == n)
						ans[i] = (ans[1] % n + p[i]) + n * (ans[1] / n + q[i]);
					else
						ans[i] = (ans[1] % n + q[i]) + n * (ans[1] / n + p[i]);
				}
				else if(p[i] == q[i]){
					ans[i] = (ans[1] % n + p[i]) + n * (ans[1] / n + q[i]);
				}
				else{
					cout << "? " << i << " " << t << endl;
					cin >> p2 >> q2;
					ans[i] = n * (q2 + 1) + (n - 1 + p2);
					for (int j = i + 1; j <= n * n - n; j++){
						if(p[i]==p[j]&&q[i]==q[j]){
							ans[j] = n * (ans[1] / n + ans[i] % n - ans[1] % n) + (ans[1] % n + ans[i] / n - ans[1] / n);
							break;
						}
					}
				}
			}
		}
	}
	cout << "!";
	for (int i = 1; i <= n * n - n; i++)
		cout << " " << ans[i];
	cout << endl;
}
0