結果

問題 No.1307 Rotate and Accumulate
ユーザー kcvlexkcvlex
提出日時 2020-12-04 23:15:08
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 18,007 bytes
コンパイル時間 2,421 ms
コンパイル使用メモリ 169,952 KB
実行使用メモリ 18,928 KB
最終ジャッジ日時 2024-09-15 09:01:31
合計ジャッジ時間 9,732 ms
ジャッジサーバーID
(参考情報)
judge6 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 3 ms
5,376 KB
testcase_03 AC 13 ms
5,376 KB
testcase_04 AC 33 ms
5,376 KB
testcase_05 AC 32 ms
5,376 KB
testcase_06 AC 14 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 TLE -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <limits>
#include <initializer_list>
#include <utility>
#include <bitset>
#include <tuple>
#include <type_traits>
#include <functional>
#include <string>
#include <array>
#include <deque>
#include <list>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <iterator>
#include <algorithm>
#include <complex>
#include <random>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <regex>
#include <cassert>
#include <cstddef>
#include <variant>

#define endl codeforces

#define ALL(v) std::begin(v), std::end(v)
#define ALLR(v) std::rbegin(v), std::rend(v)

using ll = std::int64_t;
using ull = std::uint64_t;
using pii = std::pair<int, int>;
using tii = std::tuple<int, int, int>;
using pll = std::pair<ll, ll>;
using tll = std::tuple<ll, ll, ll>;
using size_type = ssize_t;
template <typename T> using vec = std::vector<T>;
template <typename T> using vvec = vec<vec<T>>;

template <typename T> const T& var_min(const T &t) { return t; }
template <typename T> const T& var_max(const T &t) { return t; }
template <typename T, typename... Tail> const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); }
template <typename T, typename... Tail> const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); }
template <typename T, typename... Tail> void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); }
template <typename T, typename... Tail> void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); }

template <typename T, std::size_t Head, std::size_t... Tail> 
struct multi_dim_array { using type = std::array<typename multi_dim_array<T, Tail...>::type, Head>; };

template <typename T, std::size_t Head> 
struct multi_dim_array<T, Head> { using type = std::array<T, Head>; };

template <typename T, std::size_t... Args> using mdarray = typename multi_dim_array<T, Args...>::type;

template <typename T, typename F, typename... Args> 
void fill_seq(T &t, F f, Args... args) { 
    if constexpr (std::is_invocable<F, Args...>::value) { 
        t = f(args...); 
    } else { 
        for (size_type i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i); 
    } 
}

template <typename T> vec<T> make_v(size_type sz) { return vec<T>(sz); }

template <typename T, typename... Tail> 
auto make_v(size_type hs, Tail&&... ts) { 
    auto v = std::move(make_v<T>(std::forward<Tail>(ts)...)); 
    return vec<decltype(v)>(hs, v); 
}

namespace init__ { 
struct InitIO { 
    InitIO() { 
        std::cin.tie(nullptr); 
        std::ios_base::sync_with_stdio(false); 
        std::cout << std::fixed << std::setprecision(30); 
    } 
} init_io; 
}

template <typename T>
T ceil_pow2(T bound) {
    T ret = 1;
    while (ret < bound) ret *= 2;
    return ret;
}

template <typename T>
T ceil_div(T a, T b) { return a / b + !!(a % b); }


namespace math {

template <typename T>
constexpr T mul_id_ele() {
    if constexpr (std::is_fundamental<T>::value) {
        return T(1);
    } else {
        return T::mul_id_ele();
    }
}

template <typename T>
constexpr T add_id_ele() {
    if constexpr (std::is_fundamental<T>::value) {
        return T(0);
    } else {
        return T::add_id_ele();
    }
}

template <typename T>
constexpr T pow(const T &n, ll k) {
    T ret = mul_id_ele<T>();
    T cur = n;
    while (k) {
        if (k & 1) ret *= cur;
        cur *= cur;
        k /= 2;
    }
    return ret;
}


template <typename T>
typename std::enable_if<std::is_integral<T>::value, T>::type
gcd(T a, T b) { return b ? gcd(a % b, b) : a; }

}

namespace math {

template <ull Mod>
struct Modint {

    constexpr Modint(ll x) noexcept : x((Mod + x % static_cast<ll>(Mod)) % Mod) { }
    constexpr Modint() noexcept : Modint(0) { }
    
    constexpr static Modint add_id_ele() { 
        return Modint(0); 
    }
    
    constexpr static Modint mul_id_ele() {
        return Modint(1);
    }
    
    constexpr ll value() const noexcept { 
        return static_cast<ll>(x);
    }

    constexpr Modint& operator+=(const Modint &oth) noexcept {
        x += oth.value();
        if (Mod <= x) x -= Mod;
        return *this;
    }

    constexpr Modint& operator-=(const Modint &oth) noexcept {
        x += Mod - oth.value();
        if (Mod <= x) x -= Mod;
        return *this;
    }

    constexpr Modint& operator*=(const Modint &oth) noexcept {
        x *= oth.value();
        x %= Mod;
        return *this;
    }

    constexpr Modint& operator/=(const Modint &oth) noexcept {
        x *= oth.inv().value();
        x %= Mod;
        return *this;
    }

    constexpr Modint operator+(const Modint &oth) const noexcept {
        return Modint(x) += oth;
    }

    constexpr Modint operator-(const Modint &oth) const noexcept {
        return Modint(x) -= oth;
    }

    constexpr Modint operator*(const Modint &oth) const noexcept {
        return Modint(x) *= oth;
    }

    constexpr Modint operator/(const Modint &oth) const noexcept {
        return Modint(x) /= oth;
    }

    constexpr Modint operator-() const noexcept {
        return Modint((x != 0) * (Mod - x)); 
    }

    constexpr bool operator==(const Modint &oth) const noexcept {
        return value() == oth.value();
    }

    template <typename T>
    constexpr typename std::enable_if<std::is_integral<T>::value, const Modint&>::type
    operator=(T t) noexcept {
        (*this) = Modint(std::forward<T>(t)); 
        return *this;
    }

    constexpr Modint inv() const noexcept {
        return ::math::pow(*this, Mod - 2);
    }

    constexpr ull mod() const noexcept {
        return Mod;
    }

private:
    ull x;
};

template <ull Mod>
Modint<Mod> inv(Modint<Mod> m) {
    return m.inv();
}

template <ull Mod>
std::istream& operator>>(std::istream &is, Modint<Mod> &m) {
    ll v;
    is >> v;
    m = v;
    return is;
}

template <ull Mod>
std::ostream& operator<<(std::ostream &os, Modint<Mod> m) {
    os << m.value();
    return os;
}

}

namespace poly {

template <typename T, typename Impl>
struct convolution_interface {
    void multiply(vec<T> &a, vec<T> b) {
        static_cast<Impl*>(this)->multiply(a, b);
    }

    // TODO : value_type
    template <typename Container>
    void multiply_sparse(vec<T> &a, Container terms) {
        std::sort(ALLR(terms), [&](const auto &p, const auto &q) { return p.second < q.second; });
        a.resize(a.size() + terms[0].second);
        for (size_type i = size_type(a.size() - 1); 0 <= i; i--) {
            auto cur = std::move(a[i]);
            a[i] = T();
            for (const auto &[ v, deg ] : terms) if (i + deg < a.size()) a[i + deg] += cur * v;
        }
    }

    // TODO : buggy ? 
    template <typename Container>
    void divide_sparse(vec<T> &a, Container terms) {
        std::sort(ALL(terms), [&](const auto &p, const auto &q) { return p.second < q.second; });
        assert(terms[0].second == 0);
        for (size_type i = 0; i < size_type(a.size()); i++) {
            a[i] *= terms[0].first;
            for (const auto &[ v, deg ] : terms) if (deg && 0 <= i - deg) a[i] -= v * a[i - deg];
        }
    }
};

template <typename T>
struct SimpleConvolution : convolution_interface<T, SimpleConvolution<T>> {
    void multiply(vec<T> &a, vec<T> b) {
        a.resize(a.size() + b.size()  - 1);
        for (size_type i = size_type(a.size()) - 1; 0 <= i; i--) {
            auto cur = std::move(a[i]);
            a[i] = T();
            for (size_type j = size_type(b.size()); 0 <= j; j--) {
                if (i + j < a.size()) a[i + j] += cur * b[j];
            }
        }
    }
};

}

namespace poly {

namespace internal {

template <ull Mod>
constexpr bool is_primitive_root(ll r) {
    math::Modint<Mod> mr(r);
    for (ll d = 2; d * d <= Mod; d++) {
        if ((Mod - 1) % d == 0) {
            if (pow(mr, d).value() == 1) return false;
            if (pow(mr, (Mod - 1) / d).value() == 1) return false;
        }
    }
    return true;
}

template <ull Mod>
constexpr ll find_primitive_root(ll r) {
    return (is_primitive_root<Mod>(r) ? r : find_primitive_root<Mod>(r + 1));
}

template <ull Mod>
constexpr ll find_primitive_root() {
    return find_primitive_root<Mod>(2);
}

constexpr auto calc_max_base(ll m) {
    ll ret = 0;
    for (; m % 2 == 0; ret++, m /= 2);
    return ret;
}

}

template <ull Mod, ull PrimitiveRoot = internal::find_primitive_root<Mod>()>
struct NTT : convolution_interface<math::Modint<Mod>, NTT<Mod, PrimitiveRoot>> {
    using mint = math::Modint<Mod>;
    using value_type = mint;

    constexpr NTT() 
        :  root_lis(max_size_log), 
           iroot_lis(max_size_log)
    {
        for (size_type i = 0; i < static_cast<size_type>(root_lis.size()); i++) {
            root_lis[i] = pow(mint(PrimitiveRoot), (Mod - 1) >> (i + 2)) * -1;
            iroot_lis[i] = root_lis[i].inv();
        }
    }

    void multiply(vec<value_type> &a, vec<value_type> b) {
        size_type m = a.size(), n = b.size();
        size_type sz = 1, res_sz = n + m - 1;
        while (sz < res_sz) sz *= 2;
        a.resize(sz); b.resize(sz);
        ntt(a, sz, false);
        ntt(b, sz, false);
        auto isz = mint(sz).inv();
        for (size_type i = 0; i < sz; i++) a[i] *= b[i] * isz;
        ntt(a, sz, true);
        a.resize(res_sz);
    }

private:
    static constexpr size_type max_size_log = internal::calc_max_base(Mod - 1);
    static constexpr size_type max_size = 1ll << max_size_log;
    static constexpr size_type max_conv_size = max_size * 2;

    vec<mint> root_lis, iroot_lis;
    using buf_iterator = typename vec<mint>::iterator;

    void ntt(vec<value_type> &v, size_type sz, bool inv) {
        if (!inv) {
            for (int m = sz / 2; m; m /= 2) {
                mint mul = 1;
                for(int s = 0, k = 0; s < sz; s += 2 * m) {
                    for(int i = s, j = s + m; i < s + m; ++i, ++j) {
                        auto x = v[i], y = v[j] * mul;
                        v[i] = x + y;
                        v[j] = x - y;
                    }
                    mul *= root_lis[__builtin_ctz(++k)];
                }
            }
        } else {
            for (int m = 1; m < sz; m *= 2) {
                mint mul = 1;
                for (int s = 0, k = 0; s < sz; s += 2 * m) {
                    for (int i = s, j = s + m; i < s + m; i++, j++) {
                        auto l = v[i], r = v[j];
                        v[i] = l + r;
                        v[j] = (l - r) * mul;
                    }
                    mul *= iroot_lis[__builtin_ctz(++k)];
                }
            }
        }
    }
};

}

namespace poly {

template <typename T, typename ConvolutionImpl>
struct FPS : vec<T> {
    using value_type = T;
    using vec<T>::vec;
    using conv_type = convolution_interface<T, ConvolutionImpl>;
    using term_type = std::pair<value_type, size_type>;

    static conv_type** get_conv() {
        static conv_type *conv = nullptr;
        return &conv;
    }

    static void set_conv(conv_type *conv) {
        *(get_conv()) = conv;
    }

    size_type degree() const {
        return size_type(this->size()) - 1;
    }

    FPS& reverse() {
        std::reverse(ALL(*this));
        return *this;
    }

    FPS& extend(size_type deg) {
        this->resize(deg + 1);
        return *this;
    }
    
    FPS& prefix(size_type deg) {
        this->resize(deg + 1);
        return *this;
    }

    FPS& shift(size_type s) {
        size_type deg = degree();
        for (size_type i = 0; i + s <= deg; i++) {
            (*this)[i] = (*this)[i + s];
        }
        return prefix(deg - s);
    }

    FPS& rshift(size_type s) {
        extend(s + degree());
        for (size_type i = degree(); 0 <= i; i--) (*this)[i] = (i < s ? 0 : (*this)[i - s]);
        return *this;
    }

    FPS& middle(size_type l, size_type r) {
        return this->shift(l).prefix(r - l);
    }

    FPS& add(const FPS &rhs) {
        if (degree() < rhs.degree()) extend(rhs.degree());
        for (size_type i = 0; i <= degree(); i++) (*this)[i] += rhs[i];
        return *this;
    }

    FPS& sub(const FPS &rhs) {
        if (degree() < rhs.degree()) extend(rhs.degree());
        for (size_type i = 0; i <= degree(); i++) (*this)[i] -= rhs[i];
        return *this;
    }

    FPS& mul(FPS rhs) {
        if (rhs.degree() < 64) {
            auto cmp = rhs.compress();
            if (cmp.size()) multiply_sparse(std::move(cmp));
        } else {
            (*get_conv())->multiply(*this, std::move(rhs));
        }
        return *this;
    }

    FPS& mul(T t) {
        for (auto &e : (*this)) e *= t;
        return *this;
    }

    FPS& shrink() {
        while (1 <= degree() && this->back() == T(0)) this->pop_back();
        return *this;
    }

    // f(0) != 0
    FPS& inv(size_type deg) {
        FPS orig(*this);
        prefix(0);
        (*this)[0] = (*this)[0].inv();
        for (size_type i = 1; i <= deg; i *= 2) {
            FPS d(i * 2);
            for (size_type j = 0; j <= std::min(d.degree(), orig.degree()); j++) d[j] = orig[j];
            d.mul(*this).mul(*this).prefix(i * 2 - 1);
            this->mul(T(2))
                 .sub(std::move(d))
                 .prefix(i * 2 - 1);
        }
        return prefix(deg);
    }

    // den[0] != 0
    FPS& quo(FPS den) {
        if (degree() < den.degree()) {
            this->clear();
            this->push_back(T(0));
            return *this;
        }

        size_type sz = degree() - den.degree();
        den.reverse().inv(sz);
        return this->reverse()
                    .prefix(sz)
                    .mul(std::move(den))
                    .prefix(sz)
                    .reverse();
    }

    // den[0] != 0
    FPS& mod(FPS den) {
        auto q = *this;
        q.quo(den).mul(std::move(den));
        return this->sub(std::move(q))
                    .shrink();
    }

    FPS& diff() {
        for (ll i = 0; i + 1 <= degree() ; i++) (*this)[i] = (*this)[i + 1] * T(i + 1);
        if (1 <= degree()) prefix(degree() - 1);
        return *this;
    }
    
    FPS& integrate() {
        this->resize(this->size() + 1);
        for (ll i = degree(); 1 <= i; i--) (*this)[i] = (*this)[i - 1] * inv(i);
        (*this)[0] = 0;
        return *this;
    }

    value_type operator()(const value_type &x) const noexcept {
        value_type ret = 0;
        value_type p = 1;
        for (auto &&coef : (*this)) {
            ret += coef * p;
            p *= x;
        }
        return ret;
    }
    
    template <typename Container>
    FPS& multiply_sparse(Container terms) {
        (*get_conv())->multiply_sparse(*this, terms);
        return *this;
    }

    template <typename Container>
    FPS& divide_sparse(Container terms) {
        (*get_conv())->divide_sparse(*this, terms);
        return *this;
    }

    vec<term_type> compress() const {
        vec<term_type> ret;
        for (size_type i = 0; i <= degree(); i++) {
            if ((*this)[i] == 0) continue;
            ret.emplace_back((*this)[i], i);
        }
        return ret;
    }
};

template <typename Poly> Poly prefix(Poly f, size_type sz) { return f.prefix(sz); }
template <typename Poly> Poly inv(Poly f, size_type sz) { return f.inv(sz); }
template <typename Poly> Poly add(Poly lhs, const Poly &rhs) { return lhs.add(rhs); }
template <typename Poly> Poly sub(Poly lhs, const Poly &rhs) { return lhs.sub(rhs); }
template <typename Poly> Poly mul(Poly lhs, const Poly &rhs) { return lhs.mul(rhs); }
template <typename Poly> Poly quo(Poly lhs, const Poly &rhs) { return lhs.quo(rhs); }
template <typename Poly> Poly mod(Poly lhs, const Poly &rhs) { return lhs.mod(rhs); }

template <typename Poly> Poly mul(Poly lhs, Poly &&rhs) { return lhs.mul(std::move(rhs)); }
template <typename Poly> Poly quo(Poly lhs, Poly &&rhs) { return lhs.quo(std::move(rhs)); }
template <typename Poly> Poly mod(Poly lhs, Poly &&rhs) { return lhs.mod(std::move(rhs)); }

template <typename T, typename ConvImpl>
std::ostream& operator<<(std::ostream &os, const FPS<T, ConvImpl> &f) {
    if (f.empty()) return os;
    std::cout << f[0];
    for (size_type i = 1; i <= f.degree(); i++) os << ' ' << f[i];
    return os;
}

template <typename Poly1, typename Poly2>
std::pair<Poly1, Poly1> div(Poly1 lhs, Poly2 &&rhs) {
    auto q = std::move(quo(lhs, rhs));
    auto m = std::move(mul(q, std::forward<Poly2>(rhs)));
    lhs.sub(std::move(m)).shrink();
    return std::make_pair(std::move(q), std::move(lhs));
}

// http://q.c.titech.ac.jp/docs/progs/polynomial_division.html
// [x^N](P/Q)
template <typename Poly>
typename Poly::value_type 
coef_of_div(Poly P, Poly Q, size_type N) {
    assert(Q[0] == 1);
    assert(P.size() + 1 == Q.size());

    for (; N; N /= 2) {
        FPS Qn = Q;
        for (size_type i = 1; i < Q.size(); i += 2) Qn[i] *= -1;
        auto PQ = std::move(mul(P, Qn));
        auto QQ = std::move(mul(Q, Qn));
        for (size_type i = 0, offset = N % 2; i < P.size(); i++) P[i] = PQ[2 * i + offset];
        for (size_type i = 0; i < Q.size(); i++) Q[i] = QQ[2 * i];
    }

    return P[0];
}

}

constexpr ll mod = 998'244'353;
using mint = math::Modint<mod>;
using fps_t = poly::FPS<mint, poly::NTT<mod>>;
poly::NTT<mod> ntt;

int main() {
    fps_t::set_conv(&ntt);
    ll n, q;
    std::cin >> n >> q;
    vec<ll> av(n), rv(q);
    for (ll &e : av) std::cin >> e;
    for (ll &e : rv) std::cin >> e;

    fps_t rhs(n + 1);
    vvec<ll> idxv(1e3 + 1);
    for (ll i = 0; i < n; i++) {
        idxv[av[i]].push_back(i);
    }
    for (ll i = 0; i < q; i++) rhs[n - rv[i]] += 1;

    vec<ll> ans(n);
    for (ll i = 1; i <= int(1e3); i++) {
        fps_t lhs(n);
        for (ll e : idxv[i]) lhs[e] += 1;
        lhs.mul(rhs);
        for (ll j = 0; j <= lhs.degree(); j++) ans[j % n] += i * lhs[j].value();
    }

    for (ll i = 0; i < n; i++) std::cout << ans[i] << " \n"[i + 1 == n];
    return 0;
}
0