結果
問題 | No.1307 Rotate and Accumulate |
ユーザー | kcvlex |
提出日時 | 2020-12-04 23:15:08 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 18,007 bytes |
コンパイル時間 | 2,421 ms |
コンパイル使用メモリ | 169,952 KB |
実行使用メモリ | 18,928 KB |
最終ジャッジ日時 | 2024-09-15 09:01:31 |
合計ジャッジ時間 | 9,732 ms |
ジャッジサーバーID (参考情報) |
judge6 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 3 ms
5,376 KB |
testcase_03 | AC | 13 ms
5,376 KB |
testcase_04 | AC | 33 ms
5,376 KB |
testcase_05 | AC | 32 ms
5,376 KB |
testcase_06 | AC | 14 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | TLE | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
ソースコード
#include <limits> #include <initializer_list> #include <utility> #include <bitset> #include <tuple> #include <type_traits> #include <functional> #include <string> #include <array> #include <deque> #include <list> #include <queue> #include <stack> #include <vector> #include <map> #include <set> #include <unordered_map> #include <unordered_set> #include <iterator> #include <algorithm> #include <complex> #include <random> #include <numeric> #include <iostream> #include <iomanip> #include <sstream> #include <regex> #include <cassert> #include <cstddef> #include <variant> #define endl codeforces #define ALL(v) std::begin(v), std::end(v) #define ALLR(v) std::rbegin(v), std::rend(v) using ll = std::int64_t; using ull = std::uint64_t; using pii = std::pair<int, int>; using tii = std::tuple<int, int, int>; using pll = std::pair<ll, ll>; using tll = std::tuple<ll, ll, ll>; using size_type = ssize_t; template <typename T> using vec = std::vector<T>; template <typename T> using vvec = vec<vec<T>>; template <typename T> const T& var_min(const T &t) { return t; } template <typename T> const T& var_max(const T &t) { return t; } template <typename T, typename... Tail> const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); } template <typename T, typename... Tail> const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); } template <typename T, typename... Tail> void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); } template <typename T, typename... Tail> void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); } template <typename T, std::size_t Head, std::size_t... Tail> struct multi_dim_array { using type = std::array<typename multi_dim_array<T, Tail...>::type, Head>; }; template <typename T, std::size_t Head> struct multi_dim_array<T, Head> { using type = std::array<T, Head>; }; template <typename T, std::size_t... Args> using mdarray = typename multi_dim_array<T, Args...>::type; template <typename T, typename F, typename... Args> void fill_seq(T &t, F f, Args... args) { if constexpr (std::is_invocable<F, Args...>::value) { t = f(args...); } else { for (size_type i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i); } } template <typename T> vec<T> make_v(size_type sz) { return vec<T>(sz); } template <typename T, typename... Tail> auto make_v(size_type hs, Tail&&... ts) { auto v = std::move(make_v<T>(std::forward<Tail>(ts)...)); return vec<decltype(v)>(hs, v); } namespace init__ { struct InitIO { InitIO() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(30); } } init_io; } template <typename T> T ceil_pow2(T bound) { T ret = 1; while (ret < bound) ret *= 2; return ret; } template <typename T> T ceil_div(T a, T b) { return a / b + !!(a % b); } namespace math { template <typename T> constexpr T mul_id_ele() { if constexpr (std::is_fundamental<T>::value) { return T(1); } else { return T::mul_id_ele(); } } template <typename T> constexpr T add_id_ele() { if constexpr (std::is_fundamental<T>::value) { return T(0); } else { return T::add_id_ele(); } } template <typename T> constexpr T pow(const T &n, ll k) { T ret = mul_id_ele<T>(); T cur = n; while (k) { if (k & 1) ret *= cur; cur *= cur; k /= 2; } return ret; } template <typename T> typename std::enable_if<std::is_integral<T>::value, T>::type gcd(T a, T b) { return b ? gcd(a % b, b) : a; } } namespace math { template <ull Mod> struct Modint { constexpr Modint(ll x) noexcept : x((Mod + x % static_cast<ll>(Mod)) % Mod) { } constexpr Modint() noexcept : Modint(0) { } constexpr static Modint add_id_ele() { return Modint(0); } constexpr static Modint mul_id_ele() { return Modint(1); } constexpr ll value() const noexcept { return static_cast<ll>(x); } constexpr Modint& operator+=(const Modint &oth) noexcept { x += oth.value(); if (Mod <= x) x -= Mod; return *this; } constexpr Modint& operator-=(const Modint &oth) noexcept { x += Mod - oth.value(); if (Mod <= x) x -= Mod; return *this; } constexpr Modint& operator*=(const Modint &oth) noexcept { x *= oth.value(); x %= Mod; return *this; } constexpr Modint& operator/=(const Modint &oth) noexcept { x *= oth.inv().value(); x %= Mod; return *this; } constexpr Modint operator+(const Modint &oth) const noexcept { return Modint(x) += oth; } constexpr Modint operator-(const Modint &oth) const noexcept { return Modint(x) -= oth; } constexpr Modint operator*(const Modint &oth) const noexcept { return Modint(x) *= oth; } constexpr Modint operator/(const Modint &oth) const noexcept { return Modint(x) /= oth; } constexpr Modint operator-() const noexcept { return Modint((x != 0) * (Mod - x)); } constexpr bool operator==(const Modint &oth) const noexcept { return value() == oth.value(); } template <typename T> constexpr typename std::enable_if<std::is_integral<T>::value, const Modint&>::type operator=(T t) noexcept { (*this) = Modint(std::forward<T>(t)); return *this; } constexpr Modint inv() const noexcept { return ::math::pow(*this, Mod - 2); } constexpr ull mod() const noexcept { return Mod; } private: ull x; }; template <ull Mod> Modint<Mod> inv(Modint<Mod> m) { return m.inv(); } template <ull Mod> std::istream& operator>>(std::istream &is, Modint<Mod> &m) { ll v; is >> v; m = v; return is; } template <ull Mod> std::ostream& operator<<(std::ostream &os, Modint<Mod> m) { os << m.value(); return os; } } namespace poly { template <typename T, typename Impl> struct convolution_interface { void multiply(vec<T> &a, vec<T> b) { static_cast<Impl*>(this)->multiply(a, b); } // TODO : value_type template <typename Container> void multiply_sparse(vec<T> &a, Container terms) { std::sort(ALLR(terms), [&](const auto &p, const auto &q) { return p.second < q.second; }); a.resize(a.size() + terms[0].second); for (size_type i = size_type(a.size() - 1); 0 <= i; i--) { auto cur = std::move(a[i]); a[i] = T(); for (const auto &[ v, deg ] : terms) if (i + deg < a.size()) a[i + deg] += cur * v; } } // TODO : buggy ? template <typename Container> void divide_sparse(vec<T> &a, Container terms) { std::sort(ALL(terms), [&](const auto &p, const auto &q) { return p.second < q.second; }); assert(terms[0].second == 0); for (size_type i = 0; i < size_type(a.size()); i++) { a[i] *= terms[0].first; for (const auto &[ v, deg ] : terms) if (deg && 0 <= i - deg) a[i] -= v * a[i - deg]; } } }; template <typename T> struct SimpleConvolution : convolution_interface<T, SimpleConvolution<T>> { void multiply(vec<T> &a, vec<T> b) { a.resize(a.size() + b.size() - 1); for (size_type i = size_type(a.size()) - 1; 0 <= i; i--) { auto cur = std::move(a[i]); a[i] = T(); for (size_type j = size_type(b.size()); 0 <= j; j--) { if (i + j < a.size()) a[i + j] += cur * b[j]; } } } }; } namespace poly { namespace internal { template <ull Mod> constexpr bool is_primitive_root(ll r) { math::Modint<Mod> mr(r); for (ll d = 2; d * d <= Mod; d++) { if ((Mod - 1) % d == 0) { if (pow(mr, d).value() == 1) return false; if (pow(mr, (Mod - 1) / d).value() == 1) return false; } } return true; } template <ull Mod> constexpr ll find_primitive_root(ll r) { return (is_primitive_root<Mod>(r) ? r : find_primitive_root<Mod>(r + 1)); } template <ull Mod> constexpr ll find_primitive_root() { return find_primitive_root<Mod>(2); } constexpr auto calc_max_base(ll m) { ll ret = 0; for (; m % 2 == 0; ret++, m /= 2); return ret; } } template <ull Mod, ull PrimitiveRoot = internal::find_primitive_root<Mod>()> struct NTT : convolution_interface<math::Modint<Mod>, NTT<Mod, PrimitiveRoot>> { using mint = math::Modint<Mod>; using value_type = mint; constexpr NTT() : root_lis(max_size_log), iroot_lis(max_size_log) { for (size_type i = 0; i < static_cast<size_type>(root_lis.size()); i++) { root_lis[i] = pow(mint(PrimitiveRoot), (Mod - 1) >> (i + 2)) * -1; iroot_lis[i] = root_lis[i].inv(); } } void multiply(vec<value_type> &a, vec<value_type> b) { size_type m = a.size(), n = b.size(); size_type sz = 1, res_sz = n + m - 1; while (sz < res_sz) sz *= 2; a.resize(sz); b.resize(sz); ntt(a, sz, false); ntt(b, sz, false); auto isz = mint(sz).inv(); for (size_type i = 0; i < sz; i++) a[i] *= b[i] * isz; ntt(a, sz, true); a.resize(res_sz); } private: static constexpr size_type max_size_log = internal::calc_max_base(Mod - 1); static constexpr size_type max_size = 1ll << max_size_log; static constexpr size_type max_conv_size = max_size * 2; vec<mint> root_lis, iroot_lis; using buf_iterator = typename vec<mint>::iterator; void ntt(vec<value_type> &v, size_type sz, bool inv) { if (!inv) { for (int m = sz / 2; m; m /= 2) { mint mul = 1; for(int s = 0, k = 0; s < sz; s += 2 * m) { for(int i = s, j = s + m; i < s + m; ++i, ++j) { auto x = v[i], y = v[j] * mul; v[i] = x + y; v[j] = x - y; } mul *= root_lis[__builtin_ctz(++k)]; } } } else { for (int m = 1; m < sz; m *= 2) { mint mul = 1; for (int s = 0, k = 0; s < sz; s += 2 * m) { for (int i = s, j = s + m; i < s + m; i++, j++) { auto l = v[i], r = v[j]; v[i] = l + r; v[j] = (l - r) * mul; } mul *= iroot_lis[__builtin_ctz(++k)]; } } } } }; } namespace poly { template <typename T, typename ConvolutionImpl> struct FPS : vec<T> { using value_type = T; using vec<T>::vec; using conv_type = convolution_interface<T, ConvolutionImpl>; using term_type = std::pair<value_type, size_type>; static conv_type** get_conv() { static conv_type *conv = nullptr; return &conv; } static void set_conv(conv_type *conv) { *(get_conv()) = conv; } size_type degree() const { return size_type(this->size()) - 1; } FPS& reverse() { std::reverse(ALL(*this)); return *this; } FPS& extend(size_type deg) { this->resize(deg + 1); return *this; } FPS& prefix(size_type deg) { this->resize(deg + 1); return *this; } FPS& shift(size_type s) { size_type deg = degree(); for (size_type i = 0; i + s <= deg; i++) { (*this)[i] = (*this)[i + s]; } return prefix(deg - s); } FPS& rshift(size_type s) { extend(s + degree()); for (size_type i = degree(); 0 <= i; i--) (*this)[i] = (i < s ? 0 : (*this)[i - s]); return *this; } FPS& middle(size_type l, size_type r) { return this->shift(l).prefix(r - l); } FPS& add(const FPS &rhs) { if (degree() < rhs.degree()) extend(rhs.degree()); for (size_type i = 0; i <= degree(); i++) (*this)[i] += rhs[i]; return *this; } FPS& sub(const FPS &rhs) { if (degree() < rhs.degree()) extend(rhs.degree()); for (size_type i = 0; i <= degree(); i++) (*this)[i] -= rhs[i]; return *this; } FPS& mul(FPS rhs) { if (rhs.degree() < 64) { auto cmp = rhs.compress(); if (cmp.size()) multiply_sparse(std::move(cmp)); } else { (*get_conv())->multiply(*this, std::move(rhs)); } return *this; } FPS& mul(T t) { for (auto &e : (*this)) e *= t; return *this; } FPS& shrink() { while (1 <= degree() && this->back() == T(0)) this->pop_back(); return *this; } // f(0) != 0 FPS& inv(size_type deg) { FPS orig(*this); prefix(0); (*this)[0] = (*this)[0].inv(); for (size_type i = 1; i <= deg; i *= 2) { FPS d(i * 2); for (size_type j = 0; j <= std::min(d.degree(), orig.degree()); j++) d[j] = orig[j]; d.mul(*this).mul(*this).prefix(i * 2 - 1); this->mul(T(2)) .sub(std::move(d)) .prefix(i * 2 - 1); } return prefix(deg); } // den[0] != 0 FPS& quo(FPS den) { if (degree() < den.degree()) { this->clear(); this->push_back(T(0)); return *this; } size_type sz = degree() - den.degree(); den.reverse().inv(sz); return this->reverse() .prefix(sz) .mul(std::move(den)) .prefix(sz) .reverse(); } // den[0] != 0 FPS& mod(FPS den) { auto q = *this; q.quo(den).mul(std::move(den)); return this->sub(std::move(q)) .shrink(); } FPS& diff() { for (ll i = 0; i + 1 <= degree() ; i++) (*this)[i] = (*this)[i + 1] * T(i + 1); if (1 <= degree()) prefix(degree() - 1); return *this; } FPS& integrate() { this->resize(this->size() + 1); for (ll i = degree(); 1 <= i; i--) (*this)[i] = (*this)[i - 1] * inv(i); (*this)[0] = 0; return *this; } value_type operator()(const value_type &x) const noexcept { value_type ret = 0; value_type p = 1; for (auto &&coef : (*this)) { ret += coef * p; p *= x; } return ret; } template <typename Container> FPS& multiply_sparse(Container terms) { (*get_conv())->multiply_sparse(*this, terms); return *this; } template <typename Container> FPS& divide_sparse(Container terms) { (*get_conv())->divide_sparse(*this, terms); return *this; } vec<term_type> compress() const { vec<term_type> ret; for (size_type i = 0; i <= degree(); i++) { if ((*this)[i] == 0) continue; ret.emplace_back((*this)[i], i); } return ret; } }; template <typename Poly> Poly prefix(Poly f, size_type sz) { return f.prefix(sz); } template <typename Poly> Poly inv(Poly f, size_type sz) { return f.inv(sz); } template <typename Poly> Poly add(Poly lhs, const Poly &rhs) { return lhs.add(rhs); } template <typename Poly> Poly sub(Poly lhs, const Poly &rhs) { return lhs.sub(rhs); } template <typename Poly> Poly mul(Poly lhs, const Poly &rhs) { return lhs.mul(rhs); } template <typename Poly> Poly quo(Poly lhs, const Poly &rhs) { return lhs.quo(rhs); } template <typename Poly> Poly mod(Poly lhs, const Poly &rhs) { return lhs.mod(rhs); } template <typename Poly> Poly mul(Poly lhs, Poly &&rhs) { return lhs.mul(std::move(rhs)); } template <typename Poly> Poly quo(Poly lhs, Poly &&rhs) { return lhs.quo(std::move(rhs)); } template <typename Poly> Poly mod(Poly lhs, Poly &&rhs) { return lhs.mod(std::move(rhs)); } template <typename T, typename ConvImpl> std::ostream& operator<<(std::ostream &os, const FPS<T, ConvImpl> &f) { if (f.empty()) return os; std::cout << f[0]; for (size_type i = 1; i <= f.degree(); i++) os << ' ' << f[i]; return os; } template <typename Poly1, typename Poly2> std::pair<Poly1, Poly1> div(Poly1 lhs, Poly2 &&rhs) { auto q = std::move(quo(lhs, rhs)); auto m = std::move(mul(q, std::forward<Poly2>(rhs))); lhs.sub(std::move(m)).shrink(); return std::make_pair(std::move(q), std::move(lhs)); } // http://q.c.titech.ac.jp/docs/progs/polynomial_division.html // [x^N](P/Q) template <typename Poly> typename Poly::value_type coef_of_div(Poly P, Poly Q, size_type N) { assert(Q[0] == 1); assert(P.size() + 1 == Q.size()); for (; N; N /= 2) { FPS Qn = Q; for (size_type i = 1; i < Q.size(); i += 2) Qn[i] *= -1; auto PQ = std::move(mul(P, Qn)); auto QQ = std::move(mul(Q, Qn)); for (size_type i = 0, offset = N % 2; i < P.size(); i++) P[i] = PQ[2 * i + offset]; for (size_type i = 0; i < Q.size(); i++) Q[i] = QQ[2 * i]; } return P[0]; } } constexpr ll mod = 998'244'353; using mint = math::Modint<mod>; using fps_t = poly::FPS<mint, poly::NTT<mod>>; poly::NTT<mod> ntt; int main() { fps_t::set_conv(&ntt); ll n, q; std::cin >> n >> q; vec<ll> av(n), rv(q); for (ll &e : av) std::cin >> e; for (ll &e : rv) std::cin >> e; fps_t rhs(n + 1); vvec<ll> idxv(1e3 + 1); for (ll i = 0; i < n; i++) { idxv[av[i]].push_back(i); } for (ll i = 0; i < q; i++) rhs[n - rv[i]] += 1; vec<ll> ans(n); for (ll i = 1; i <= int(1e3); i++) { fps_t lhs(n); for (ll e : idxv[i]) lhs[e] += 1; lhs.mul(rhs); for (ll j = 0; j <= lhs.degree(); j++) ans[j % n] += i * lhs[j].value(); } for (ll i = 0; i < n; i++) std::cout << ans[i] << " \n"[i + 1 == n]; return 0; }