結果
問題 | No.997 Jumping Kangaroo |
ユーザー | kissshot7 |
提出日時 | 2020-12-05 03:24:17 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 6 ms / 2,000 ms |
コード長 | 6,574 bytes |
コンパイル時間 | 2,560 ms |
コンパイル使用メモリ | 177,096 KB |
実行使用メモリ | 7,552 KB |
最終ジャッジ日時 | 2024-09-15 10:19:28 |
合計ジャッジ時間 | 3,078 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 5 ms
7,424 KB |
testcase_01 | AC | 5 ms
7,552 KB |
testcase_02 | AC | 5 ms
7,552 KB |
testcase_03 | AC | 5 ms
7,424 KB |
testcase_04 | AC | 5 ms
7,424 KB |
testcase_05 | AC | 5 ms
7,552 KB |
testcase_06 | AC | 5 ms
7,552 KB |
testcase_07 | AC | 5 ms
7,552 KB |
testcase_08 | AC | 6 ms
7,552 KB |
testcase_09 | AC | 5 ms
7,552 KB |
testcase_10 | AC | 5 ms
7,552 KB |
testcase_11 | AC | 5 ms
7,424 KB |
testcase_12 | AC | 6 ms
7,552 KB |
testcase_13 | AC | 5 ms
7,424 KB |
testcase_14 | AC | 5 ms
7,424 KB |
testcase_15 | AC | 6 ms
7,424 KB |
testcase_16 | AC | 6 ms
7,424 KB |
testcase_17 | AC | 5 ms
7,552 KB |
testcase_18 | AC | 5 ms
7,424 KB |
testcase_19 | AC | 5 ms
7,424 KB |
testcase_20 | AC | 5 ms
7,424 KB |
testcase_21 | AC | 5 ms
7,552 KB |
testcase_22 | AC | 6 ms
7,552 KB |
testcase_23 | AC | 5 ms
7,552 KB |
testcase_24 | AC | 5 ms
7,424 KB |
testcase_25 | AC | 5 ms
7,424 KB |
testcase_26 | AC | 5 ms
7,424 KB |
testcase_27 | AC | 6 ms
7,424 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; //#define int long long typedef long long ll; typedef unsigned long long ul; typedef unsigned int ui; const ll mod = 1000000007; // const ll mod = 998244353; const ll INF = mod * mod; const int INF_N = 1e+9; typedef pair<int, int> P; #define rep(i,n) for(int i=0;i<n;i++) #define per(i,n) for(int i=n-1;i>=0;i--) #define Rep(i,sta,n) for(int i=sta;i<n;i++) #define rep1(i,n) for(int i=1;i<=n;i++) #define per1(i,n) for(int i=n;i>=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) #define all(v) (v).begin(),(v).end() typedef pair<ll, ll> LP; typedef long double ld; typedef pair<ld, ld> LDP; const ld eps = 1e-12; const ld pi = acos(-1.0); //typedef vector<vector<ll>> mat; typedef vector<int> vec; //繰り返し二乗法 ll mod_pow(ll a, ll n, ll m) { ll res = 1; while (n) { if (n & 1)res = res * a%m; a = a * a%m; n >>= 1; } return res; } struct modint { ll n; modint() :n(0) { ; } modint(ll m) :n(m) { if (n >= mod)n %= mod; else if (n < 0)n = (n%mod + mod) % mod; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } modint operator+=(modint &a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; } modint operator-=(modint &a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; } modint operator*=(modint &a, modint b) { a.n = ((ll)a.n*b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, int n) { if (n == 0)return modint(1); modint res = (a*a) ^ (n / 2); if (n % 2)res = res * a; return res; } //逆元(Eucledean algorithm) ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p%a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } const int max_n = 1 << 18; modint fact[max_n], factinv[max_n]; void init_f() { fact[0] = modint(1); for (int i = 0; i < max_n - 1; i++) { fact[i + 1] = fact[i] * modint(i + 1); } factinv[max_n - 1] = modint(1) / fact[max_n - 1]; for (int i = max_n - 2; i >= 0; i--) { factinv[i] = factinv[i + 1] * modint(i + 1); } } modint comb(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[b] * factinv[a - b]; } using mP = pair<modint, modint>; int dx[4] = { 0,1,0,-1 }; int dy[4] = { 1,0,-1,0 }; template< class T > struct Matrix { std::vector< std::vector< T > > A; Matrix() {} Matrix(size_t n, size_t m) : A(n, std::vector< T >(m, 0)) {} Matrix(size_t n) : A(n, std::vector< T >(n, 0)) {}; size_t height() const { return (A.size()); } size_t width() const { return (A[0].size()); } inline const std::vector< T > &operator[](int k) const { return (A.at(k)); } inline std::vector< T > &operator[](int k) { return (A.at(k)); } static Matrix I(size_t n) { Matrix mat(n); for (int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); std::vector< std::vector< T > > C(n, std::vector< T >(m, 0)); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) for (int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } friend std::ostream &operator<<(std::ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for (int i = 0; i < n; i++) { os << "["; for (int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() { Matrix B(*this); assert(width() == height()); T ret = 1; for (int i = 0; i < width(); i++) { int idx = -1; for (int j = i; j < width(); j++) { if (B[j][i] != 0) idx = j; } if (idx == -1) return (0); if (i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for (int j = 0; j < width(); j++) { B[i][j] /= vv; } for (int j = i + 1; j < width(); j++) { T a = B[j][i]; for (int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } Matrix pow(int64_t k) const { auto res = I(A.size()); auto M = *this; while (k > 0) { if (k & 1) { res *= M; } M *= M; k >>= 1; } return res; } }; modint dp1[50], dp2[100]; void solve() { int n, w; ll k; cin >> n >> w >> k; vec a(n); rep(i, n) cin >> a[i]; dp1[0] = 1; rep(i, w){ rep(j, n){ if(i+a[j] <= w){ dp1[i+a[j]] += dp1[i]; } } } dp2[0] = 1; rep(i, 2*w){ rep(j, n){ if(i+a[j] == w) continue; if(i+a[j] <= 2*w){ dp2[i+a[j]] += dp2[i]; } } } Matrix<modint> mat(2); mat[0][0] = dp1[w]; mat[0][1] = dp2[2*w]; mat[1][0] = 1; auto res = mat.pow(k); cout << res[0][0].n << endl; } signed main() { ios::sync_with_stdio(false); cin.tie(0); //cout << fixed << setprecision(10); //init_f(); //init(); //int t; cin >> t; rep(i, t)solve(); solve(); // stop return 0; }