結果
| 問題 |
No.1308 ジャンプビーコン
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-12-05 06:18:55 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,540 ms / 4,000 ms |
| コード長 | 10,661 bytes |
| コンパイル時間 | 3,248 ms |
| コンパイル使用メモリ | 221,548 KB |
| 最終ジャッジ日時 | 2025-01-16 17:26:11 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 37 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define ALL(obj) (obj).begin(),(obj).end()
template<class T> using priority_queue_reverse = priority_queue<T,vector<T>,greater<T>>;
constexpr long long MOD = 1'000'000'000LL + 7; //'
constexpr long long MOD2 = 998244353;
constexpr long long HIGHINF = (long long)1e18;
constexpr long long LOWINF = (long long)1e15;
constexpr long double PI = 3.1415926535897932384626433L;
template <class T> vector<T> multivector(size_t N,T init){return vector<T>(N,init);}
template <class... T> auto multivector(size_t N,T... t){return vector<decltype(multivector(t...))>(N,multivector(t...));}
template <class T> void corner(bool flg, T hoge) {if (flg) {cout << hoge << endl; exit(0);}}
template <class T, class U>ostream &operator<<(ostream &o, const map<T, U>&obj) {o << "{"; for (auto &x : obj) o << " {" << x.first << " : " << x.second << "}" << ","; o << " }"; return o;}
template <class T>ostream &operator<<(ostream &o, const set<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;}
template <class T>ostream &operator<<(ostream &o, const multiset<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;}
template <class T>ostream &operator<<(ostream &o, const vector<T>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") << obj[i]; o << "}"; return o;}
template <class T, class U>ostream &operator<<(ostream &o, const pair<T, U>&obj) {o << "{" << obj.first << ", " << obj.second << "}"; return o;}
void print(void) {cout << endl;}
template <class Head> void print(Head&& head) {cout << head;print();}
template <class Head, class... Tail> void print(Head&& head, Tail&&... tail) {cout << head << " ";print(forward<Tail>(tail)...);}
template <class T> void chmax(T& a, const T b){a=max(a,b);}
template <class T> void chmin(T& a, const T b){a=min(a,b);}
vector<string> split(const string &str, const char delemiter) {vector<string> res;stringstream ss(str);string buffer; while( getline(ss, buffer, delemiter) ) res.push_back(buffer); return res;}
int msb(int x) {return x?31-__builtin_clz(x):-1;}
void YN(bool flg) {cout << (flg ? "YES" : "NO") << endl;}
void Yn(bool flg) {cout << (flg ? "Yes" : "No") << endl;}
void yn(bool flg) {cout << (flg ? "yes" : "no") << endl;}
/*
* @title Graph
* @docs md/graph/Graph.md
*/
template<class T> class Graph{
private:
const size_t N,H,W;
public:
vector<vector<pair<size_t,T>>> edges;
Graph():H(-1),W(-1),N(0) {}
Graph(const size_t N):H(-1),W(-1),N(N), edges(N) {}
Graph(const size_t H, const size_t W):H(H),W(W),N(H*W), edges(H*W) {}
inline void make_edge(size_t from, size_t to, T w) {
edges[from].emplace_back(to,w);
}
//{from_y,from_x} -> {to_y,to_x}
inline void make_edge(pair<size_t,size_t> from, pair<size_t,size_t> to, T w) {
make_edge(from.first*W+from.second,to.first*W+to.second,w);
}
inline void make_bidirectional_edge(size_t from, size_t to, T w) {
make_edge(from,to,w);
make_edge(to,from,w);
}
inline void make_bidirectional_edge(pair<size_t,size_t> from, pair<size_t,size_t> to, T w) {
make_edge(from.first*W+from.second,to.first*W+to.second,w);
make_edge(to.first*W+to.second,from.first*W+from.second,w);
}
inline void resize(const size_t _N) {N=_N;edges.resize(N);}
inline size_t size(){return N;}
inline size_t idx(pair<size_t,size_t> yx){return yx.first*W+yx.second;}
};
template<class Operator> class TreeBuilder;
template<class Operator> class Tree {
using TypeEdge = typename Operator::TypeEdge;
size_t num;
size_t ord;
Graph<TypeEdge>& g;
friend TreeBuilder<Operator>;
/**
* constructor
* O(N)
*/
Tree(Graph<TypeEdge>& graph):
g(graph),
num(graph.size()),
depth(graph.size(),-1),
order(graph.size()),
edge_dist(graph.size()){
}
//for make_depth
void dfs(int curr, int prev){
for(const auto& e:g.edges[curr]){
const int& next = e.first;
if(next==prev) continue;
depth[next] = depth[curr] + 1;
edge_dist[next] = Operator::func_edge_merge(edge_dist[curr],e.second);
dfs(next,curr);
order[ord++] = next;
}
}
/**
* 深さを作る
* O(N) you can use anytime
*/
void make_depth(const int root) {
depth[root] = 0;
edge_dist[root] = Operator::unit_edge;
ord = 0;
dfs(root,-1);
order[ord++] = root;
reverse_copy(order.begin(),order.end(),back_inserter(reorder));
}
/**
* 子を作る
* O(N) after make_depth
*/
void make_child(const int root = 0) {
child.resize(num);
for (size_t i = 0; i < num; ++i) for (auto& e : g.edges[i]) if (depth[i] < depth[e.first]) child[i].push_back(e);
}
/**
* 部分木のサイズを作る
* O(N) after make_depth
*/
void make_subtree_size() {
subtree_size.resize(num,1);
for (size_t i:order) for (auto e : child[i]) subtree_size[i] += subtree_size[e.first];
}
/**
* 親を作る
* O(N) after make_depth
*/
void make_parent() {
parent.resize(num,make_pair(num,Operator::unit_edge));
for (size_t i = 0; i < num; ++i) for (auto& e : g.edges[i]) if (depth[i] > depth[e.first]) parent[i] = e;
}
void make_ancestor() {
ancestor.resize(num);
for (size_t i = 0; i < num; ++i) ancestor[i][0] = (parent[i].first!=num?parent[i]:make_pair(i,Operator::unit_lca_edge));
for (size_t j = 1; j < Operator::bit; ++j) {
for (size_t i = 0; i < num; ++i) {
size_t k = ancestor[i][j - 1].first;
ancestor[i][j] = Operator::func_lca_edge_merge(ancestor[k][j - 1],ancestor[i][j - 1]);
}
}
}
pair<size_t,TypeEdge> lca_impl(size_t l, size_t r) {
if (depth[l] < depth[r]) swap(l, r);
int diff = depth[l] - depth[r];
auto ancl = make_pair(l,Operator::unit_lca_edge);
auto ancr = make_pair(r,Operator::unit_lca_edge);
for (int j = 0; j < Operator::bit; ++j) {
if (diff & (1 << j)) ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][j],ancl);
}
if(ancl.first==ancr.first) return ancl;
for (int j = Operator::bit - 1; 0 <= j; --j) {
if(ancestor[ancl.first][j].first!=ancestor[ancr.first][j].first) {
ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][j],ancl);
ancr = Operator::func_lca_edge_merge(ancestor[ancr.first][j],ancr);
}
}
ancl = Operator::func_lca_edge_merge(ancestor[ancl.first][0],ancl);
ancr = Operator::func_lca_edge_merge(ancestor[ancr.first][0],ancr);
return Operator::func_lca_edge_merge(ancl,ancr);
}
public:
vector<size_t> depth;
vector<size_t> order;
vector<size_t> reorder;
vector<size_t> subtree_size;
vector<pair<size_t,TypeEdge>> parent;
vector<vector<pair<size_t,TypeEdge>>> child;
vector<TypeEdge> edge_dist;
vector<array<pair<size_t,TypeEdge>,Operator::bit>> ancestor;
/**
* O(N) builder
*/
static TreeBuilder<Operator> builder(Graph<TypeEdge>& graph) {
return TreeBuilder<Operator>(graph);
}
/**
* O(logN) after make_ancestor
* return {lca,lca_dist} l and r must be connected
*/
pair<size_t,TypeEdge> lca(size_t l, size_t r) {return lca_impl(l,r);}
};
template<class Operator> class TreeBuilder {
bool is_depth_made =false;
bool is_child_made =false;
bool is_parent_made=false;
public:
using TypeEdge = typename Operator::TypeEdge;
TreeBuilder(Graph<TypeEdge>& g):tree(g){}
TreeBuilder& depth(const int root) { is_depth_made=true; tree.make_depth(root); return *this;}
TreeBuilder& child() { assert(is_depth_made); is_child_made=true; tree.make_child(); return *this;}
TreeBuilder& parent() { assert(is_depth_made); is_parent_made=true; tree.make_parent(); return *this;}
TreeBuilder& subtree_size() { assert(is_child_made); tree.make_subtree_size(); return *this;}
TreeBuilder& ancestor() { assert(is_parent_made); tree.make_ancestor(); return *this;}
Tree<Operator>&& build() {return move(tree);}
private:
Tree<Operator> tree;
};
template<class T> struct TreeOperator{
using TypeEdge = T;
inline static constexpr size_t bit = 20;
inline static constexpr TypeEdge unit_edge = 0;
inline static constexpr TypeEdge unit_lca_edge = 0;
inline static constexpr TypeEdge func_edge_merge(const TypeEdge& parent,const TypeEdge& w){return parent+w;}
inline static constexpr pair<size_t,TypeEdge> func_lca_edge_merge(const pair<size_t,TypeEdge>& l,const pair<size_t,TypeEdge>& r){return make_pair(l.first,l.second+r.second);}
};
/**
* @url
* @est
*/
int main() {
cin.tie(0);ios::sync_with_stdio(false);
long long N,Q,C; cin >> N >> Q >> C;
Graph<long long> graph(N);
for(int i=0;i+1<N;++i) {
int u,v,w; cin >> u >> v >> w;
u--,v--;
graph.make_bidirectional_edge(u,v,w);
}
vector<int> X(Q);
for(int i=0;i<Q;++i) cin >> X[i],X[i]--;
//dp_i,j := x_iにいて、ジャンプビーコンがjにあるときの最小値。j=Nはビーコンなし。
auto dp = multivector(Q,N+1,HIGHINF);
dp[0][N]=0;
for(int i=1;i<Q;++i) {
Tree<TreeOperator<long long>> tree
= Tree<TreeOperator<long long>>::builder(graph).depth(X[i]).parent().child().build();
//jにあるジャンプビーコンをそのままにして、X[i]へ向かうとき
for(int j=0;j<=N;++j) {
chmin(dp[i][j],dp[i-1][j]+tree.edge_dist[X[i-1]]);
}
//jにジャンプビーコンを置いて、X[i]へ向かうとき
{
long long cost=tree.edge_dist[X[i-1]];
for(int j=X[i-1]; j != X[i]; j = tree.parent[j].first) {
chmin(dp[i][j],dp[i-1][N]+cost);
}
}
//ジャンプビーコンを使った後、X[i]へ向かうとき
for(int j=0;j<N;++j){
chmin(dp[i][N],dp[i-1][j]+tree.edge_dist[j]+C);
}
//ジャンプビーコンを使った後jにジャンプビーコンを置いて、X[i]へ向かうとき
//dp2_j := 頂点jにいるときの最小値
vector<long long> dp2(N);
for(int j=0;j<N;++j) dp2[j]=dp[i-1][j]+(X[i-1]==j?0:C);
for(int j:tree.order) {
long long cost=0;
{
cost+=tree.edge_dist[j];
}
for(auto& e:tree.child[j]) {
int ch = e.first;
chmin(dp2[j],dp2[ch]+e.second);
}
cost += dp2[j];
chmin(dp[i][j],cost);
}
}
cout << *min_element(ALL(dp.back())) << endl;
return 0;
}