結果
| 問題 | 
                            No.458 異なる素数の和
                             | 
                    
| コンテスト | |
| ユーザー | 
                             | 
                    
| 提出日時 | 2020-12-05 13:45:51 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 1,610 ms / 2,000 ms | 
| コード長 | 5,613 bytes | 
| コンパイル時間 | 440 ms | 
| コンパイル使用メモリ | 82,304 KB | 
| 実行使用メモリ | 510,976 KB | 
| 最終ジャッジ日時 | 2024-09-15 17:08:50 | 
| 合計ジャッジ時間 | 11,107 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge3 / judge2 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 28 | 
ソースコード
from math import sqrt
# from pprint import pprint
# import cProfile
# import pstats
# from memory_profiler import profile
# import sys
# @profile
def prime(N: int):
    # 素数一覧。
    primes = get_primes_until_n(N)
    # (value, weight) 化します。
    # それぞれの数字の価値は全部 1 です。なるべく多く入ってほしい = 全価値同じ、ってことだから。
    # HACK: 速度のため、わかりやすく (value, weight) にしていたのをやめます。
    # primes = [(1, _) for _ in primes_]
    # print(primes)
    # 表のいちばん左の列。行の数は、冒頭の例でいえば 18+1。重量 0 のときの行があるからひとつ多い。
    # None は、「その重さは作れない」ことを意味します。だって 1 とか素数足しても作れないでしょ?
    # dp = [[None] * (N + 1)]
    # だけど重さ 0 が、素数 0 個選択で作れることは分かってるので 0 に更新しときます。
    # dp[0][0] = 0
    # HACK: 速度のために、一番最初に全部作ることにしました。
    # HACK: 速度のために None -> -1 にしました。
    dp = [[0] + [-1] * N for i in range(len(primes) + 1)]
    # print(sys.getsizeof(dp))
    # 素数の個数分計算を行います。
    for i in range(len(primes)):
        # i の周回では primes[i] まで選べるときの計算をします。
        # 表でいえば i+1 列目ね。
        # value = primes[i][0]
        # weight = primes[i][1]
        # HACK: 速度のため、わかりやすく (value, weight) にしていたのをやめます。
        # i+1 列目を作っておきます。
        # dp.append([None] * (N + 1))
        # dp[i + 1][0] = 0
        # HACK: 速度のために、一番最初に全部作ることにしました。
        prime = primes[i]
        for w in range(N + 1):
            # HACK: 速度のために、下の if をひとつにします。
            if dp[i][w] != -1 and w + prime <= N:
                dp[i + 1][w + prime] = dp[i][w] + 1
            # dp[i][w] のマスに、 primes[i] を足したらどうなる? って検証をするんだけど、
            # そもそもこのマスが作成不可マス……どう素数を足しても作れない重さ……だったら計算する意味がないです。
            # if dp[i][w] == -1:
                # continue
            # このマス右隣(dp[i + 1][w])と比較します。
            # 現在のマス dp[i][w] には、 primes[i] まで選べるときの最大値が入っていて、
            # 右隣には、 primes[i+1] を足した場合の値が入ってます。
            # それが不適切(今のままのほうが大きい)場合があるから、更新します。
            # HACK: 速度のため max -> if にします。
            if dp[i][w] > dp[i + 1][w]:
                dp[i + 1][w] = dp[i][w]
            else:
                dp[i + 1][w] = dp[i + 1][w]
            # じゃあこのマスに primes[i] を足してみます。
            # ひとつ足すわけだから、格納する列は i+1 になります。
            # 格納する行は、 w + primes[i] の重さ になります。
            # ただ N を超えるようならどうだっていいのでスキップです。
            # if w + primes[i] > N:
            #     continue
            # 格納する値は、いまのところからひとつ足すので +1 です。今回では value が全部 1。
            # dp[i + 1][w + primes[i]] = dp[i][w] + 1
    # dp テーブル作り終わりました。
    # この表には、素数が i 個選べるとき w をぴったり作れる素数の個数が入っています。
    # pprint(dp, width=200)
    # 今回知りたいのは、 N をぴったり作れるときの最大数です。
    # N をぴったり作れる個数の一覧がこれ。
    possible_values = [i[N] for i in dp]
    # その中で最大のものを返します。あっ、 None が混ざっているので None は -1 に変換します。
    # possible_values = [_ if _ else -1 for _ in possible_values]
    return max(possible_values)
def get_primes_until_n(N: int):
    """N までの素数一覧を返します。"""
    # 2〜N の dictionary です。
    # この先の処理で、素数でないものは False にしていきます。最終的に値が True のまま残った key が素数です。
    # NOTE: list にして、 index を key 扱いしたほうがイカすんだけど dictionary のほうがわかりやすいかと思って。
    dic = {i: True for i in range(2, N + 1)}
    # N の平方根までチェックすれば、全部の数の素数判定は終わります。
    for i in range(2, int(sqrt(N)) + 1):
        # すでに False(素数ではない)判定になっているものは計算不要です。
        if dic[i] is False:
            continue
        # 2 から始まるので、その先の倍数を全部 False(素数ではない)にしていけば最後には素数だけが True で残ります。
        j = i * 2
        while j <= N:
            dic[j] = False
            j += i
    return [i for i in dic.keys() if dic[i]]
# print(prime(18) == 3)
# print(prime(4) == -1)
# print(prime(3) == 1)
# print(prime(1) == -1)
# print(prime(3344) == 41)
print(prime(int(input())))
# def test():
#     return prime(int(input()))
# profiler = cProfile.Profile()
# profiler.runcall(test)
# stats = pstats.Stats(profiler)
# stats.strip_dirs()
# stats.sort_stats('cumulative')
# stats.print_stats()