結果

問題 No.458 異なる素数の和
ユーザー Yuu EguciYuu Eguci
提出日時 2020-12-05 14:11:28
言語 PyPy3
(7.3.15)
結果
MLE  
実行時間 -
コード長 5,171 bytes
コンパイル時間 254 ms
コンパイル使用メモリ 82,560 KB
実行使用メモリ 512,640 KB
最終ジャッジ日時 2024-09-15 17:11:15
合計ジャッジ時間 9,565 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 53 ms
62,848 KB
testcase_01 AC 422 ms
190,592 KB
testcase_02 AC 518 ms
218,516 KB
testcase_03 AC 146 ms
96,256 KB
testcase_04 AC 166 ms
108,032 KB
testcase_05 AC 1,067 ms
452,992 KB
testcase_06 AC 501 ms
217,728 KB
testcase_07 AC 61 ms
64,896 KB
testcase_08 AC 1,066 ms
455,296 KB
testcase_09 AC 87 ms
83,636 KB
testcase_10 AC 38 ms
52,224 KB
testcase_11 MLE -
testcase_12 AC 38 ms
52,224 KB
testcase_13 AC 38 ms
52,224 KB
testcase_14 AC 39 ms
52,224 KB
testcase_15 AC 38 ms
52,608 KB
testcase_16 AC 104 ms
83,752 KB
testcase_17 AC 43 ms
58,624 KB
testcase_18 AC 46 ms
60,032 KB
testcase_19 AC 39 ms
52,480 KB
testcase_20 AC 46 ms
60,288 KB
testcase_21 AC 39 ms
51,968 KB
testcase_22 AC 39 ms
52,352 KB
testcase_23 AC 46 ms
60,416 KB
testcase_24 AC 47 ms
60,288 KB
testcase_25 AC 40 ms
52,480 KB
testcase_26 AC 43 ms
58,880 KB
testcase_27 AC 481 ms
206,080 KB
testcase_28 AC 1,223 ms
504,832 KB
testcase_29 AC 75 ms
73,088 KB
testcase_30 AC 323 ms
156,928 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

from math import sqrt
# from pprint import pprint
# import cProfile
# import pstats


# def prime(N: int):

N = int(input())



# def get_primes_until_n(N: int):
#     """N までの素数一覧を返します。"""

# 2〜N の dictionary です。
# この先の処理で、素数でないものは False にしていきます。最終的に値が True のまま残った key が素数です。
# NOTE: list にして、 index を key 扱いしたほうがイカすんだけど dictionary のほうがわかりやすいかと思って。
dic = {i: True for i in range(2, N + 1)}

# N の平方根までチェックすれば、全部の数の素数判定は終わります。
for i in range(2, int(sqrt(N)) + 1):

    # すでに False(素数ではない)判定になっているものは計算不要です。
    if dic[i] is False:
        continue

    # 2 から始まるので、その先の倍数を全部 False(素数ではない)にしていけば最後には素数だけが True で残ります。
    j = i * 2
    while j <= N:
        dic[j] = False
        j += i

primes = [i for i in dic.keys() if dic[i]]


# print(prime(18) == 3)
# print(prime(4) == -1)
# print(prime(3) == 1)
# print(prime(1) == -1)
# print(prime(3344) == 41)
# print(prime())

# 素数一覧。
# primes = get_primes_until_n(N)
# (value, weight) 化します。
# それぞれの数字の価値は全部 1 です。なるべく多く入ってほしい = 全価値同じ、ってことだから。
# HACK: 速度のため、わかりやすく (value, weight) にしていたのをやめます。
# primes = [(1, _) for _ in primes_]
# print(primes)

# 表のいちばん左の列。行の数は、冒頭の例でいえば 18+1。重量 0 のときの行があるからひとつ多い。
# None は、「その重さは作れない」ことを意味します。だって 1 とか素数足しても作れないでしょ?
# dp = [[None] * (N + 1)]
# だけど重さ 0 が、素数 0 個選択で作れることは分かってるので 0 に更新しときます。
# dp[0][0] = 0
# HACK: 速度のために、一番最初に全部作ることにしました。
# HACK: 速度のために None -> -1 にしました。
dp = [[0] + [-1] * N for i in range(len(primes) + 1)]
# print(sys.getsizeof(dp))

# 素数の個数分計算を行います。
for i in range(len(primes)):

    # i の周回では primes[i] まで選べるときの計算をします。
    # 表でいえば i+1 列目ね。
    # value = primes[i][0]
    # weight = primes[i][1]
    # HACK: 速度のため、わかりやすく (value, weight) にしていたのをやめます。

    # i+1 列目を作っておきます。
    # dp.append([None] * (N + 1))
    # dp[i + 1][0] = 0
    # HACK: 速度のために、一番最初に全部作ることにしました。

    for w in range(N + 1):

        # HACK: 速度のために、下の if をひとつにします。
        if w + primes[i] <= N and dp[i][w] != -1:
            dp[i + 1][w + primes[i]] = dp[i][w] + 1

        # dp[i][w] のマスに、 primes[i] を足したらどうなる? って検証をするんだけど、
        # そもそもこのマスが作成不可マス……どう素数を足しても作れない重さ……だったら計算する意味がないです。
        # if dp[i][w] == -1:
            # continue

        # このマス右隣(dp[i + 1][w])と比較します。
        # 現在のマス dp[i][w] には、 primes[i] まで選べるときの最大値が入っていて、
        # 右隣には、 primes[i+1] を足した場合の値が入ってます。
        # それが不適切(今のままのほうが大きい)場合があるから、更新します。
        # HACK: 速度のため max -> if にします。
        dp[i + 1][w] = max(dp[i][w], dp[i + 1][w])

        # じゃあこのマスに primes[i] を足してみます。
        # ひとつ足すわけだから、格納する列は i+1 になります。
        # 格納する行は、 w + primes[i] の重さ になります。
        # ただ N を超えるようならどうだっていいのでスキップです。
        # if w + primes[i] > N:
        #     continue
        # 格納する値は、いまのところからひとつ足すので +1 です。今回では value が全部 1。
        # dp[i + 1][w + primes[i]] = dp[i][w] + 1

# dp テーブル作り終わりました。
# この表には、素数が i 個選べるとき w をぴったり作れる素数の個数が入っています。
# pprint(dp, width=200)
# 今回知りたいのは、 N をぴったり作れるときの最大数です。
# N をぴったり作れる個数の一覧がこれ。
possible_values = [i[N] for i in dp]
# その中で最大のものを返します。あっ、 None が混ざっているので None は -1 に変換します。
# possible_values = [_ if _ else -1 for _ in possible_values]
print(max(possible_values))

# def test():
#     return prime(int(input()))


# profiler = cProfile.Profile()
# profiler.runcall(test)
# stats = pstats.Stats(profiler)
# stats.strip_dirs()
# stats.sort_stats('cumulative')
# stats.print_stats()
0