結果
問題 | No.1324 Approximate the Matrix |
ユーザー | theory_and_me |
提出日時 | 2020-12-05 18:00:34 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
MLE
|
実行時間 | - |
コード長 | 7,754 bytes |
コンパイル時間 | 3,159 ms |
コンパイル使用メモリ | 228,584 KB |
実行使用メモリ | 516,600 KB |
最終ジャッジ日時 | 2024-09-19 23:34:01 |
合計ジャッジ時間 | 6,087 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
10,752 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | MLE | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
testcase_42 | -- | - |
testcase_43 | -- | - |
testcase_44 | -- | - |
ソースコード
// TLE解 O(N^2K)本の辺を張り,ベルマンフォードでポテンシャル計算 #include <bits/stdc++.h> using namespace std; using ll = long long; template <class Cap, class Cost> struct mcf_graph { public: std::vector<Cost> dual; mcf_graph() {} mcf_graph(int n) : _n(n), g(n) { dual.resize(_n, 0); } int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from && from < _n); assert(0 <= to && to < _n); int m = int(pos.size()); pos.push_back({from, int(g[from].size())}); g[from].push_back(_edge{to, int(g[to].size()), cap, cost}); g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost}); return m; } struct edge { int from, to; Cap cap, flow; Cost cost; }; edge get_edge(int i) { int m = int(pos.size()); assert(0 <= i && i < m); auto _e = g[pos[i].first][pos[i].second]; auto _re = g[_e.to][_e.rev]; return edge{ pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost, }; } std::vector<edge> edges() { int m = int(pos.size()); std::vector<edge> result(m); for (int i = 0; i < m; i++) { result[i] = get_edge(i); } return result; } std::pair<Cap, Cost> flow(int s, int t) { return flow(s, t, std::numeric_limits<Cap>::max()); } std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) { return slope(s, t, flow_limit).back(); } std::vector<std::pair<Cap, Cost>> slope(int s, int t) { return slope(s, t, std::numeric_limits<Cap>::max()); } std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) { assert(0 <= s && s < _n); assert(0 <= t && t < _n); assert(s != t); // variants (C = maxcost): // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0 // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge // std::vector<Cost> dual(_n, 0), dist(_n); std::vector<Cost> dist(_n); std::vector<int> pv(_n), pe(_n); std::vector<bool> vis(_n); auto dual_ref_BF = [&](){ std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); dist[s] = 0; for(int itr=0;itr<_n-1;itr++){ for(int v=0;v<_n;v++){ if(dist[v] == std::numeric_limits<Cost>::max()) continue; for(int i=0;i<(int)g[v].size();i++){ auto e = g[v][i]; if(!e.cap) continue; if(dist[e.to] > dist[v] + e.cost){ dist[e.to] = dist[v] + e.cost; pv[e.to] = v; pe[e.to] = i; } } } } // detect negative cycle for(int v=0;v<_n;v++){ if(dist[v] == std::numeric_limits<Cost>::max()) continue; for(auto &e: g[v]){ if(!e.cap) continue; assert(dist[v] + e.cost >= dist[e.to]); } } if(dist[t] == std::numeric_limits<Cost>::max()) return false; for(int v=0;v<_n;v++){ if(dist[v] == std::numeric_limits<Cost>::max()) continue; dual[v] -= dist[t] - dist[v]; } return true; }; auto dual_ref = [&]() { std::fill(dist.begin(), dist.end(), std::numeric_limits<Cost>::max()); std::fill(pv.begin(), pv.end(), -1); std::fill(pe.begin(), pe.end(), -1); std::fill(vis.begin(), vis.end(), false); struct Q { Cost key; int to; bool operator<(Q r) const { return key > r.key; } }; std::priority_queue<Q> que; dist[s] = 0; que.push(Q{0, s}); while (!que.empty()) { int v = que.top().to; que.pop(); if (vis[v]) continue; vis[v] = true; if (v == t) break; // dist[v] = shortest(s, v) + dual[s] - dual[v] // dist[v] >= 0 (all reduced cost are positive) // dist[v] <= (n-1)C for (int i = 0; i < int(g[v].size()); i++) { auto e = g[v][i]; if (vis[e.to] || !e.cap) continue; // |-dual[e.to] + dual[v]| <= (n-1)C // cost <= C - -(n-1)C + 0 = nC Cost cost = e.cost - dual[e.to] + dual[v]; if (dist[e.to] - dist[v] > cost) { dist[e.to] = dist[v] + cost; pv[e.to] = v; pe[e.to] = i; que.push(Q{dist[e.to], e.to}); } } } if (!vis[t]) { return false; } for (int v = 0; v < _n; v++) { if (!vis[v]) continue; // dual[v] = dual[v] - dist[t] + dist[v] // = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v]) // = - shortest(s, t) + dual[t] + shortest(s, v) // = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C dual[v] -= dist[t] - dist[v]; } return true; }; Cap flow = 0; Cost cost = 0, prev_cost = -1; std::vector<std::pair<Cap, Cost>> result; result.push_back({flow, cost}); while (flow < flow_limit) { // 負辺がある場合 if(!flow){ if(!dual_ref_BF()) break; }else{ if(!dual_ref()) break; } // 負辺がない場合 // if(!dual_ref()) break; Cap c = flow_limit - flow; for (int v = t; v != s; v = pv[v]) { c = std::min(c, g[pv[v]][pe[v]].cap); } for (int v = t; v != s; v = pv[v]) { auto& e = g[pv[v]][pe[v]]; e.cap -= c; g[v][e.rev].cap += c; } Cost d = -dual[s]; flow += c; cost += c * d; if (prev_cost == d) { result.pop_back(); } result.push_back({flow, cost}); prev_cost = cost; } return result; } private: int _n; struct _edge { int to, rev; Cap cap; Cost cost; }; std::vector<std::pair<int, int>> pos; std::vector<std::vector<_edge>> g; }; int main(){ int N, K; cin >> N >> K; vector<int> A(N), B(N); for(int i=0;i<N;i++) cin >> A[i]; for(int i=0;i<N;i++) cin >> B[i]; vector<vector<int>> P(N, vector<int>(N, 0)); for(int i=0;i<N;i++){ for(int j=0;j<N;j++){ cin >> P[i][j]; } } mcf_graph<int, ll> G(2*N+2); int s = 2*N, t = s+1; for(int i=0;i<N;i++){ G.add_edge(s, i, A[i], 0); } ll S = 0; for(int i=0;i<N;i++){ for(int j=0;j<N;j++){ S += P[i][j] * P[i][j]; for(int k=0;k<K;k++){ G.add_edge(i, N+j, 1, 2*k+1-2*P[i][j]); } } } for(int i=0;i<N;i++){ G.add_edge(N+i, t, B[i], 0); } cout << G.flow(s, t, K).second + S << endl; return 0; }