結果

問題 No.502 階乗を計算するだけ
ユーザー kuhakukuhaku
提出日時 2020-12-06 04:02:58
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 8,222 bytes
コンパイル時間 2,314 ms
コンパイル使用メモリ 210,928 KB
実行使用メモリ 53,320 KB
最終ジャッジ日時 2024-09-17 00:50:16
合計ジャッジ時間 8,260 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 81 ms
53,060 KB
testcase_01 AC 82 ms
53,060 KB
testcase_02 AC 83 ms
53,184 KB
testcase_03 AC 82 ms
53,028 KB
testcase_04 AC 83 ms
53,064 KB
testcase_05 AC 82 ms
53,064 KB
testcase_06 AC 82 ms
53,060 KB
testcase_07 AC 82 ms
53,060 KB
testcase_08 AC 82 ms
53,188 KB
testcase_09 AC 81 ms
53,192 KB
testcase_10 AC 85 ms
53,192 KB
testcase_11 AC 86 ms
53,188 KB
testcase_12 AC 84 ms
53,072 KB
testcase_13 AC 104 ms
53,316 KB
testcase_14 AC 104 ms
53,320 KB
testcase_15 AC 81 ms
53,188 KB
testcase_16 AC 82 ms
53,204 KB
testcase_17 AC 81 ms
53,316 KB
testcase_18 AC 81 ms
53,060 KB
testcase_19 AC 83 ms
53,060 KB
testcase_20 AC 82 ms
52,976 KB
testcase_21 AC 82 ms
53,188 KB
testcase_22 AC 82 ms
53,060 KB
testcase_23 AC 83 ms
53,180 KB
testcase_24 AC 83 ms
53,060 KB
testcase_25 AC 81 ms
53,060 KB
testcase_26 AC 82 ms
53,316 KB
testcase_27 AC 82 ms
53,048 KB
testcase_28 AC 87 ms
52,984 KB
testcase_29 AC 82 ms
53,312 KB
testcase_30 AC 84 ms
53,060 KB
testcase_31 AC 82 ms
53,060 KB
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 WA -
testcase_36 WA -
testcase_37 WA -
testcase_38 WA -
testcase_39 WA -
testcase_40 WA -
testcase_41 WA -
testcase_42 AC 83 ms
53,312 KB
testcase_43 AC 85 ms
53,060 KB
testcase_44 AC 82 ms
53,020 KB
testcase_45 AC 82 ms
53,188 KB
testcase_46 AC 85 ms
53,320 KB
testcase_47 AC 82 ms
53,012 KB
testcase_48 AC 82 ms
53,032 KB
testcase_49 AC 82 ms
53,064 KB
testcase_50 AC 83 ms
53,192 KB
testcase_51 AC 81 ms
53,192 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using ll = int64_t;
using ld = long double;
using P = pair<ll, ll>;
using Pld = pair<ld, ld>;
using Vec = vector<ll>;
using VecP = vector<P>;
using VecB = vector<bool>;
using VecC = vector<char>;
using VecD = vector<ld>;
using VecS = vector<string>;
template <class T>
using Vec2 = vector<vector<T>>;
#define REP(i, m, n) for(ll i = (m); i < (n); ++i)
#define REPN(i, m, n) for(ll i = (m); i <= (n); ++i)
#define REPR(i, m, n) for(ll i = (m)-1; i >= (n); --i)
#define REPNR(i, m, n) for(ll i = (m); i >= (n); --i)
#define rep(i, n) REP(i, 0, n)
#define repn(i, n) REPN(i, 1, n)
#define repr(i, n) REPR(i, n, 0)
#define repnr(i, n) REPNR(i, n, 1)
#define all(s) (s).begin(), (s).end()
template <class T1, class T2>
bool chmax(T1 &a, const T2 b) { if (a < b) { a = b; return true; } return false; }
template <class T1, class T2>
bool chmin(T1 &a, const T2 b) { if (a > b) { a = b; return true; } return false; }
template <class T>
istream &operator>>(istream &is, vector<T> &v) { for (T &i : v) is >> i; return is; }
template <class T>
ostream &operator<<(ostream &os, const vector<T> &v) { for (const T &i : v) os << i << ' '; return os; }
void co() { cout << '\n'; }
template <class Head, class... Tail>
void co(Head&& head, Tail&&... tail) { cout << head << ' '; co(forward<Tail>(tail)...); }
void ce() { cerr << '\n'; }
template <class Head, class... Tail>
void ce(Head&& head, Tail&&... tail) { cerr << head << ' '; ce(forward<Tail>(tail)...); }
void sonic() { ios::sync_with_stdio(false); cin.tie(nullptr); }
void setp(const int n) { cout << fixed << setprecision(n); }
constexpr int64_t LINF = 1000000000000000001;
constexpr int64_t MOD = 1000000007;
constexpr int64_t MOD_N = 998244353;
constexpr long double EPS = 1e-11;
const double PI = acos(-1);

template <int mod>
struct ModInt {
    int64_t x;

    ModInt() : x(0) {}

    ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    ModInt &operator+=(const ModInt &rhs) {
        if((x += rhs.x) >= mod) x -= mod;
        return *this;
    }
    ModInt &operator-=(const ModInt &rhs) {
        if((x += mod - rhs.x) >= mod) x -= mod;
        return *this;
    }
    ModInt &operator*=(const ModInt &rhs) {
        x = (int) (1LL * x * rhs.x % mod);
        return *this;
    }
    ModInt &operator/=(const ModInt &rhs) {
        *this *= rhs.inverse();
        return *this;
    }
    
    ModInt &operator++() {
        if((++x) >= mod) x -= mod;
        return *this;
    }
    ModInt operator++(int) {
        ModInt tmp(*this);
        operator++();
        return tmp;
    }
    ModInt &operator--() {
        if((x += mod - 1) >= mod) x -= mod;
        return *this;
    }
    ModInt operator--(int) {
        ModInt tmp(*this);
        operator--();
        return tmp;
    }

    ModInt operator-() const { return ModInt(-x); }
    ModInt operator+(const ModInt &rhs) const { return ModInt(*this) += rhs; }
    ModInt operator-(const ModInt &rhs) const { return ModInt(*this) -= rhs; }
    ModInt operator*(const ModInt &rhs) const { return ModInt(*this) *= rhs; }
    ModInt operator/(const ModInt &rhs) const { return ModInt(*this) /= rhs; }

    bool operator==(const ModInt &rhs) const { return x == rhs.x; }
    bool operator!=(const ModInt &rhs) const { return x != rhs.x; }

    ModInt inverse() const {
        int a = x, b = mod, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            swap(a -= t * b, b);
            swap(u -= t * v, v);
        }
        return ModInt(u);
    }

    ModInt pow(int64_t n) const {
        ModInt res(1), mul(x);
        while (n > 0) {
            if(n & 1) res *= mul;
            mul *= mul;
            n >>= 1;
        }
        return res;
    }

    void pow_self(int64_t n) {
        ModInt tmp = pow(n);
        swap(*this, tmp);
    }

    friend ostream &operator<<(ostream &os, const ModInt &rhs) {
        return os << rhs.x;
    }

    friend istream &operator>>(istream &is, ModInt &rhs) {
        int64_t t;
        is >> t;
        rhs = ModInt< mod >(t);
        return (is);
    }

    int to_int() const { return x; }

    static int get_mod() { return mod; }
};
using Mint = ModInt<MOD>;

struct prime_number {
    vector<int64_t> data;

    prime_number() {
        init();
    }

    void init() {
        constexpr int sz = 4194304;
        bitset<sz> is_not_prime;
        is_not_prime[0] = is_not_prime[1] = true;
        for (int64_t i = 2; i < sz; ++i) {
            if (!is_not_prime[i]) {
                data.push_back(i);
                for (int64_t j = 2; i * j < sz; ++j) {
                    is_not_prime[i * j] = true;
                }
            }
        }
    }

    bool is_prime(int64_t n) {
        if (n == 1) return false;
        for (auto i : data) {
            if (i * i > n) break;
            if (n % i == 0) return false;
        }
        return true;
    }

    vector<pair<int64_t, int64_t>> prime_factorization(int64_t n) {
        vector<pair<int64_t, int64_t>> res;

        for (auto i : data) {
            int64_t cnt = 0;
            while (n % i == 0) {
                n /= i;
                cnt++;
            }
            if (cnt) res.push_back({i, cnt});
            if (n < i * i) break;
        }
        if (n != 1) res.push_back({n, 1});

        return res;
    }

    int64_t pow_int(int64_t x, int64_t n) {
        int64_t res = 1;
        while (n) {
            if (n & 1) res *= x;
            x *= x;
            n >>= 1;
        }
        return res;
    }

    vector<int64_t> divisors(int64_t n) {
        auto v = prime_factorization(n);

        vector<int64_t> res, a, b, cp;
        res.push_back(1);
        for (auto p : v) {
            cp.resize(res.size());
            copy(res.begin(), res.end(), cp.begin());
            a.resize(res.size());
            for (int64_t k = 1; k <= p.second; ++k) {
                int64_t t = pow_int(p.first, k);
                for (int64_t i = 0; i < a.size(); ++i) a[i] = cp[i] * t;
                merge(res.begin(), res.end(), a.begin(), a.end(), back_inserter(b));
                swap(res, b);
                b.clear();
            }
        }

        return res;
    }
};
prime_number pn;

template <int mod>
struct math_mod {
    using mint = ModInt<mod>;
    vector<mint> fac, finv;

    math_mod() {
        _init(3000000);
    }

    void _init(const int64_t n) {
        if (fac.size() > n) return;
        const int m = fac.size();
        fac.resize(n + 1);
        for (int64_t i = m; i <= n; ++i) {
            if (i == 0) fac[i] = 1;
            else fac[i] = fac[i - 1] * i;
        }
        finv.resize(n + 1);
        finv[n] = fac[n].inverse();
        for (int64_t i = n - 1; i >= m; --i) finv[i] = finv[i + 1] * (i + 1);
    }

    mint fact(int64_t x) {
        assert(x >= 0 && x < fac.size());
        return fac[x];
    }

    mint combi(int64_t n, int64_t k) {
        if (n < k || n < 0 || k < 0) return 0;
        _init(n);
        return fac[n] * finv[k] * finv[n - k];
    }

    mint combi_naive(int64_t n, int64_t k) {
        if (n - k < k) n = n - k;
        if (n < k || n < 0 || k < 0) return 0;
        mint res = 1;
        for (int64_t i = 0; i < k; ++i) {
            res *= n - i;
            res /= i + 1;
        }
        return res;
    }

    mint permu(int64_t n, int64_t k) {
        if (n < k || n < 0 || k < 0) return 0;
        _init(n);
        return fac[n] * finv[n - k];
    }

    mint factorial(int64_t n) {
        if (n > 4000000) return 0;
        mint ans = 1;
        for (auto p : pn.data) {
            if (n < p) break;
            int64_t c = 0, t = p;
            while (t <= n) {
                c += n / t;
                t *= p;
            }
            ans *= mint(p).pow(c);
        }
        return ans;
    }
};
math_mod<MOD> math;

int main(void) {
    ll n;
    cin >> n;

    co(math.factorial(n));

    return 0;
}
0