結果
| 問題 |
No.194 フィボナッチ数列の理解(1)
|
| コンテスト | |
| ユーザー |
ayaoni
|
| 提出日時 | 2020-12-06 14:44:05 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 199 ms / 5,000 ms |
| コード長 | 1,991 bytes |
| コンパイル時間 | 275 ms |
| コンパイル使用メモリ | 82,116 KB |
| 実行使用メモリ | 215,004 KB |
| 最終ジャッジ日時 | 2024-09-17 13:06:34 |
| 合計ジャッジ時間 | 6,495 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 37 |
ソースコード
import sys
from itertools import accumulate
sys.setrecursionlimit(10**7)
def I(): return int(sys.stdin.readline().rstrip())
def MI(): return map(int,sys.stdin.readline().rstrip().split())
def LI(): return list(map(int,sys.stdin.readline().rstrip().split()))
def LI2(): return list(map(int,sys.stdin.readline().rstrip()))
def S(): return sys.stdin.readline().rstrip()
def LS(): return list(sys.stdin.readline().rstrip().split())
def LS2(): return list(sys.stdin.readline().rstrip())
def matrix_multiplication_mod(A,B,p):
l = len(A)
m = len(B)
n = len(B[0])
C = [[0]*n for _ in range(l)]
for i in range(l):
for j in range(n):
C[i][j] = sum((A[i][k]*B[k][j]) % p for k in range(m)) % p
return C
def matrix_power_mod(A,n,p):
l = len(A)
C = [[0] * l for _ in range(l)]
for i in range(l):
C[i][i] = 1
while n > 0:
if n % 2 == 1:
C = matrix_multiplication_mod(C,A,p)
A = matrix_multiplication_mod(A,A,p)
n >>= 1
return C
N,K = MI()
A = [0]+LI()
mod = 10**9+7
if K <= 10**6:
if K <= N:
print(A[K],sum(A[:K+1]))
exit()
F = A
S = list(accumulate(F))
for i in range(N+1,K+1):
f = S[i-1]-S[i-1-N]
f %= mod
F.append(f)
S.append((S[-1]+f)% mod)
print(F[K],S[K])
else:
if K <= N:
print(A[K],sum(A[:K+1]))
exit()
X = [[0]*N for _ in range(N)]
for i in range(N):
X[0][i] = 1
for i in range(1,N):
X[i][i-1] = 1
Y = [[0]*(N+1) for _ in range(N+1)]
Y[0][0] = 2
Y[0][N] = -1
for i in range(1,N+1):
Y[i][i-1] = 1
S = list(accumulate(A))
A = list(reversed(A[1:]))
S.reverse()
XX = matrix_power_mod(X,K-N,mod)
YY = matrix_power_mod(Y,K-N,mod)
ans_F,ans_S = 0,0
for i in range(N):
ans_F += XX[0][i]*A[i]
ans_F %= mod
for i in range(N+1):
ans_S += YY[0][i]*S[i]
ans_S %= mod
print(ans_F,ans_S)
ayaoni