結果
| 問題 |
No.731 等差数列がだいすき
|
| ユーザー |
emthrm
|
| 提出日時 | 2020-12-06 18:10:25 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 1,500 ms |
| コード長 | 4,771 bytes |
| コンパイル時間 | 2,703 ms |
| コンパイル使用メモリ | 202,092 KB |
| 最終ジャッジ日時 | 2025-01-16 18:29:04 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 18 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <typename T>
struct Matrix {
Matrix(int m, int n, T val = 0) : dat(m, std::vector<T>(n, val)) {}
int height() const { return dat.size(); }
int width() const { return dat.front().size(); }
Matrix pow(long long exponent) const {
int n = height();
Matrix<T> tmp = *this, res(n, n, 0);
for (int i = 0; i < n; ++i) res[i][i] = 1;
while (exponent > 0) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
exponent >>= 1;
}
return res;
}
inline const std::vector<T> &operator[](const int idx) const { return dat[idx]; }
inline std::vector<T> &operator[](const int idx) { return dat[idx]; }
Matrix &operator=(const Matrix &x) {
int m = x.height(), n = x.width();
dat.resize(m, std::vector<T>(n));
for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) dat[i][j] = x[i][j];
return *this;
}
Matrix &operator+=(const Matrix &x) {
int m = height(), n = width();
for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) dat[i][j] += x[i][j];
return *this;
}
Matrix &operator-=(const Matrix &x) {
int m = height(), n = width();
for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) dat[i][j] -= x[i][j];
return *this;
}
Matrix &operator*=(const Matrix &x) {
int m = height(), n = x.width(), l = width();
std::vector<std::vector<T>> res(m, std::vector<T>(n, 0));
for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) {
for (int k = 0; k < l; ++k) res[i][j] += dat[i][k] * x[k][j];
}
std::swap(dat, res);
return *this;
}
Matrix operator+(const Matrix &x) const { return Matrix(*this) += x; }
Matrix operator-(const Matrix &x) const { return Matrix(*this) -= x; }
Matrix operator*(const Matrix &x) const { return Matrix(*this) *= x; }
private:
std::vector<std::vector<T>> dat;
};
template <typename T>
int gauss_jordan(Matrix<T> &mat, const T EPS = 1e-8, bool is_extended = false) {
int m = mat.height(), n = mat.width(), rank = 0;
for (int col = 0; col < n; ++col) {
if (is_extended && col == n - 1) break;
int pivot = -1;
T mx = EPS;
for (int row = rank; row < m; ++row) {
if (std::abs(mat[row][col]) > mx) {
pivot = row;
mx = std::abs(mat[row][col]);
}
}
if (pivot == -1) continue;
std::swap(mat[rank], mat[pivot]);
T tmp = mat[rank][col];
for (int col2 = 0; col2 < n; ++col2) mat[rank][col2] /= tmp;
for (int row = 0; row < m; ++row) {
if (row != rank && std::abs(mat[row][col]) > EPS) {
tmp = mat[row][col];
for (int col2 = 0; col2 < n; ++col2) mat[row][col2] -= mat[rank][col2] * tmp;
}
}
++rank;
}
return rank;
}
template <typename T, typename U = double>
std::vector<U> linear_equation(const Matrix<T> &a, const std::vector<T> &b, const U EPS = 1e-8) {
int m = a.height(), n = a.width();
Matrix<U> matrix(m, n + 1);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) matrix[i][j] = a[i][j];
matrix[i][n] = b[i];
}
int rank = gauss_jordan(matrix, EPS, true);
std::vector<U> res;
for (int row = rank; row < m; ++row) {
if (std::abs(matrix[row][n]) > EPS) return res;
}
res.assign(n, 0);
for (int i = 0; i < rank; ++i) res[i] = matrix[i][n];
return res;
}
int main() {
int n; cin >> n;
vector<int> a(n); REP(i, n) cin >> a[i];
Matrix<double> m(2, 2);
vector<double> b(2, 0);
m[0][0] = n * 2; m[0][1] = (n - 1) * n;
m[1][0] = (n - 1) * n; m[1][1] = (n - 1) * n * (n * 2 - 1) / 3;
b[0] = accumulate(ALL(a), 0) * 2;
REP(i, n) b[1] += 1LL * a[i] * i;
b[1] *= 2;
vector<double> b1d = linear_equation(m, b);
double b1 = b1d[0], d = b1d[1];
double c = n * b1 * b1 + (n - 1) * n * b1 * d - b1 * b[0] - d * b[1] + (n - 1) * n * (n * 2 - 1) / 6 * d * d;
REP(i, n) c += 1LL * a[i] * a[i];
cout << b1 << ' ' << d << '\n' << c << '\n';
return 0;
}
emthrm