結果
問題 | No.1310 量子アニーリング |
ユーザー | risujiroh |
提出日時 | 2020-12-07 04:55:28 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 26 ms / 2,000 ms |
コード長 | 4,803 bytes |
コンパイル時間 | 2,104 ms |
コンパイル使用メモリ | 204,168 KB |
実行使用メモリ | 15,576 KB |
最終ジャッジ日時 | 2024-09-17 13:36:06 |
合計ジャッジ時間 | 3,260 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 17 ms
15,488 KB |
testcase_01 | AC | 17 ms
15,488 KB |
testcase_02 | AC | 16 ms
15,576 KB |
testcase_03 | AC | 17 ms
15,488 KB |
testcase_04 | AC | 17 ms
15,488 KB |
testcase_05 | AC | 17 ms
15,488 KB |
testcase_06 | AC | 17 ms
15,572 KB |
testcase_07 | AC | 17 ms
15,488 KB |
testcase_08 | AC | 17 ms
15,488 KB |
testcase_09 | AC | 18 ms
15,488 KB |
testcase_10 | AC | 19 ms
15,488 KB |
testcase_11 | AC | 17 ms
15,488 KB |
testcase_12 | AC | 18 ms
15,488 KB |
testcase_13 | AC | 20 ms
15,488 KB |
testcase_14 | AC | 20 ms
15,360 KB |
testcase_15 | AC | 22 ms
15,360 KB |
testcase_16 | AC | 22 ms
15,488 KB |
testcase_17 | AC | 23 ms
15,488 KB |
testcase_18 | AC | 26 ms
15,488 KB |
testcase_19 | AC | 21 ms
15,488 KB |
testcase_20 | AC | 19 ms
15,488 KB |
testcase_21 | AC | 18 ms
15,488 KB |
testcase_22 | AC | 25 ms
15,484 KB |
testcase_23 | AC | 20 ms
15,488 KB |
ソースコード
#include <bits/stdc++.h> template <uint32_t Modulus> class ModularInt { using M = ModularInt; public: static_assert(int(Modulus) >= 1, "Modulus must be in the range [1, 2^31)"); static constexpr int modulus() { return Modulus; } static M raw(uint32_t v) { return *reinterpret_cast<M*>(&v); } ModularInt() : v_(0) {} ModularInt(int64_t v) : v_((v %= Modulus) < 0 ? v + Modulus : v) {} template <class T> explicit operator T() const { return v_; } M& operator++() { return v_ = ++v_ == Modulus ? 0 : v_, *this; } M& operator--() { return --(v_ ? v_ : v_ = Modulus), *this; } M operator+() const { return *this; } M operator-() const { return raw(v_ ? Modulus - v_ : 0); } M& operator*=(M o) { return v_ = uint64_t(v_) * o.v_ % Modulus, *this; } M& operator/=(M o) { auto [inv, gcd] = extgcd(o.v_, Modulus); assert(gcd == 1); return *this *= inv; } M& operator+=(M o) { return v_ = int(v_ += o.v_ - Modulus) < 0 ? v_ + Modulus : v_, *this; } M& operator-=(M o) { return v_ = int(v_ -= o.v_) < 0 ? v_ + Modulus : v_, *this; } friend M operator++(M& a, int) { return std::exchange(a, ++M(a)); } friend M operator--(M& a, int) { return std::exchange(a, --M(a)); } friend M operator*(M a, M b) { return a *= b; } friend M operator/(M a, M b) { return a /= b; } friend M operator+(M a, M b) { return a += b; } friend M operator-(M a, M b) { return a -= b; } friend std::istream& operator>>(std::istream& is, M& x) { int64_t v; return is >> v, x = v, is; } friend std::ostream& operator<<(std::ostream& os, M x) { return os << x.v_; } friend bool operator==(M a, M b) { return a.v_ == b.v_; } friend bool operator!=(M a, M b) { return a.v_ != b.v_; } private: static std::array<int, 2> extgcd(int a, int b) { std::array x{1, 0}; while (b) std::swap(x[0] -= a / b * x[1], x[1]), std::swap(a %= b, b); return {x[0], a}; } uint32_t v_; }; template <class T> constexpr T power(T a, int64_t n) { assert(n >= 0); T res = n & 1 ? a : 1; while (n >>= 1) { a *= a; if (n & 1) res *= a; } return res; } #pragma region my_template struct Rep { struct I { int i; void operator++() { ++i; } int operator*() const { return i; } bool operator!=(I o) const { return i < *o; } }; const int l_, r_; Rep(int l, int r) : l_(l), r_(r) {} Rep(int n) : Rep(0, n) {} I begin() const { return {l_}; } I end() const { return {r_}; } }; struct Per { struct I { int i; void operator++() { --i; } int operator*() const { return i; } bool operator!=(I o) const { return i > *o; } }; const int l_, r_; Per(int l, int r) : l_(l), r_(r) {} Per(int n) : Per(0, n) {} I begin() const { return {r_ - 1}; } I end() const { return {l_ - 1}; } }; template <class F> struct Fix : private F { Fix(F f) : F(f) {} template <class... Args> decltype(auto) operator()(Args&&... args) const { return F::operator()(*this, std::forward<Args>(args)...); } }; template <class T = int> T scan() { T res; std::cin >> res; return res; } template <class T, class U = T> bool chmin(T& a, U&& b) { return b < a ? a = std::forward<U>(b), true : false; } template <class T, class U = T> bool chmax(T& a, U&& b) { return a < b ? a = std::forward<U>(b), true : false; } #ifndef LOCAL #define DUMP(...) void(0) template <int OnlineJudge, int Local> constexpr int OjLocal = OnlineJudge; #endif using namespace std; #define ALL(c) begin(c), end(c) #pragma endregion using Mint = ModularInt<998244353>; constexpr int Limit = 1 << 20; auto fact = [] { std::vector<Mint> res(Limit + 1); res[0] = 1; for (int i = 1; i <= Limit; ++i) res[i] = i * res[i - 1]; return res; }(); auto ifact = [] { std::vector<Mint> res(Limit + 1); res[Limit] = 1 / fact[Limit]; for (int i = Limit; i--;) res[i] = res[i + 1] * (i + 1); return res; }(); Mint binom(int n, int k) { assert(n <= Limit); return 0 <= k and k <= n ? fact[n] * ifact[k] * ifact[n - k] : 0; } Mint homo(int n, int k) { return n or k ? binom(n + k - 1, k) : 1; } auto minv = [] { std::vector<Mint> res(Limit + 1); for (int i = 1; i <= Limit; ++i) res[i] = ifact[i] * fact[i - 1]; return res; }(); template <> Mint& Mint::operator/=(Mint o) { assert(o.v_); return *this *= o.v_ <= Limit ? minv[o.v_] : extgcd(o.v_, modulus())[0]; } int main() { cin.tie(nullptr)->sync_with_stdio(false); cout << fixed << setprecision(20); int n = scan(); Mint ans; for (int i = 0; i <= n; i += 2) ans += binom(n, i) * power<Mint>(2, abs(n - 2 * i)); ans *= 2; cout << ans << '\n'; }