結果

問題 No.368 LCM of K-products
ユーザー cotton_fn_cotton_fn_
提出日時 2020-12-08 05:45:50
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 13 ms / 2,000 ms
コード長 17,896 bytes
コンパイル時間 14,082 ms
コンパイル使用メモリ 378,332 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-17 14:23:30
合計ジャッジ時間 16,051 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 10 ms
5,248 KB
testcase_01 AC 12 ms
5,248 KB
testcase_02 AC 13 ms
5,376 KB
testcase_03 AC 13 ms
5,376 KB
testcase_04 AC 13 ms
5,376 KB
testcase_05 AC 12 ms
5,376 KB
testcase_06 AC 1 ms
5,376 KB
testcase_07 AC 1 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 1 ms
5,376 KB
testcase_10 AC 1 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 1 ms
5,376 KB
testcase_13 AC 7 ms
5,376 KB
testcase_14 AC 10 ms
5,376 KB
testcase_15 AC 12 ms
5,376 KB
testcase_16 AC 10 ms
5,376 KB
testcase_17 AC 9 ms
5,376 KB
testcase_18 AC 12 ms
5,376 KB
testcase_19 AC 4 ms
5,376 KB
testcase_20 AC 9 ms
5,376 KB
testcase_21 AC 3 ms
5,376 KB
testcase_22 AC 12 ms
5,376 KB
testcase_23 AC 2 ms
5,376 KB
testcase_24 AC 1 ms
5,376 KB
testcase_25 AC 1 ms
5,376 KB
testcase_26 AC 1 ms
5,376 KB
testcase_27 AC 1 ms
5,376 KB
testcase_28 AC 2 ms
5,376 KB
testcase_29 AC 1 ms
5,376 KB
testcase_30 AC 1 ms
5,376 KB
testcase_31 AC 1 ms
5,376 KB
testcase_32 AC 1 ms
5,376 KB
testcase_33 AC 6 ms
5,376 KB
testcase_34 AC 13 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#![allow(unused_imports, unused_macros)]

use kyoproio::*;
use std::{
    collections::*,
    io::{self, prelude::*},
    iter,
    mem::{replace, swap},
};

fn run<I: Input, O: Write>(mut kin: I, out: O) {
    let mut out = KOutput::new(out);

    let (n, k): (usize, usize) = kin.input();
    let ps = primes(32000);
    let mut small = vec![vec![]; ps.len()];
    let mut large = HashMap::new();
    for mut a in kin.iter::<u32>().take(n) {
        for (i, &p) in ps.iter().enumerate() {
            if a % p as u32 == 0 {
                let mut c = 0;
                while a % p as u32 == 0 {
                    c += 1;
                    a /= p as u32;
                }
                small[i].push(c);
            }
        }
        if a > 1 {
            *large.entry(a as usize).or_insert(0u32) += 1;
        }
    }
    let mut ans = mint(1);
    for (i, p) in ps.into_iter().enumerate() {
        small[i].sort_by_key(|c| std::cmp::Reverse(*c));
        let s = small[i].iter().take(k).sum::<u32>();
        ans *= mint(p as u32).pow(s);
    }
    for (p, c) in large {
        ans *= mint(p as u32).pow(c.min(k as u32));
    }
    outln!(out, ans.get());
}

pub fn primes(n: usize) -> Vec<usize> {
    // 1, 7, 11, 13, 17, 19, 23, 29
    const SKIP: [u8; 8] = [6, 4, 2, 4, 2, 4, 6, 2];
    const XTOI: [u8; 15] = [0, 0, 0, 1, 0, 2, 3, 0, 4, 5, 0, 6, 0, 0, 7];
    let mut sieve = vec![0u8; n / 30 + 1];
    let mut ps = vec![2, 3, 5];
    if n <= 4 {
        ps.truncate([0, 0, 1, 2, 2][n]);
        return ps;
    }
    let mut x = 7;
    let mut i = 1;
    while x <= n {
        if sieve[i / 8] & 1 << i % 8 == 0 {
            ps.push(x);
            let mut j = i;
            let mut y = x * x;
            while y <= n {
                sieve[y / 30] |= 1 << XTOI[y / 2 % 15];
                y += x * SKIP[j % 8] as usize;
                j += 1;
            }
        }
        x += SKIP[i % 8] as usize;
        i += 1;
    }
    ps
}
pub type Mint = ModInt<Mod1e9p7>;

pub fn mint(x: u32) -> Mint {
    ModInt::new(x)
}
pub trait Modulo {
    fn modulo() -> u32;
}
macro_rules! modulo_impl {
    ($($Type:ident $val:tt)*) => {
        $(pub struct $Type;
        impl Modulo for $Type {
            fn modulo() -> u32 {
                $val
            }
        })*
    };
}
modulo_impl!(Mod998244353 998244353 Mod1e9p7 1000000007);
use std::sync::atomic;
pub struct VarMod;
static VAR_MOD: atomic::AtomicU32 = atomic::AtomicU32::new(0);
pub fn set_var_mod(m: u32) {
    VAR_MOD.store(m, atomic::Ordering::Relaxed);
}
impl Modulo for VarMod {
    fn modulo() -> u32 {
        VAR_MOD.load(atomic::Ordering::Relaxed)
    }
}
use std::{fmt, marker::PhantomData, ops};
pub struct ModInt<M>(u32, PhantomData<M>);
impl<M: Modulo> ModInt<M> {
    pub fn new(x: u32) -> Self {
        debug_assert!(x < M::modulo());
        Self(x, PhantomData)
    }
    pub fn normalize(self) -> Self {
        if self.0 < M::modulo() {
            self
        } else {
            Self::new(self.0 % M::modulo())
        }
    }
    pub fn get(self) -> u32 {
        self.0
    }
    pub fn inv(self) -> Self {
        self.pow(M::modulo() - 2)
    }
    pub fn half(self) -> Self {
        Self::new(self.0 / 2 + self.0 % 2 * ((M::modulo() + 1) / 2))
    }
    pub fn modulo() -> u32 {
        M::modulo()
    }
}
impl<M: Modulo> ops::Neg for ModInt<M> {
    type Output = Self;
    fn neg(self) -> Self {
        Self::new(if self.0 == 0 { 0 } else { M::modulo() - self.0 })
    }
}
impl<M: Modulo> ops::Add for ModInt<M> {
    type Output = Self;
    fn add(self, rhs: Self) -> Self {
        let s = self.0 + rhs.0;
        Self::new(if s < M::modulo() { s } else { s - M::modulo() })
    }
}
impl<M: Modulo> ops::Sub for ModInt<M> {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self {
        Self::new(if self.0 >= rhs.0 {
            self.0 - rhs.0
        } else {
            M::modulo() + self.0 - rhs.0
        })
    }
}
impl<M: Modulo> ops::Mul for ModInt<M> {
    type Output = Self;
    fn mul(self, rhs: Self) -> Self {
        Self::new((self.0 as u64 * rhs.0 as u64 % M::modulo() as u64) as u32)
    }
}
impl<M: Modulo> ops::Div for ModInt<M> {
    type Output = Self;
    fn div(self, rhs: Self) -> Self {
        assert_ne!(rhs.get(), 0);
        self * rhs.inv()
    }
}
macro_rules! op_impl {
    ($($Op:ident $op:ident $OpAssign:ident $op_assign:ident)*) => {
        $(impl<M: Modulo> ops::$Op<&Self> for ModInt<M> {
            type Output = Self;
            fn $op(self, rhs: &Self) -> Self {
                self.$op(*rhs)
            }
        }
        impl<M: Modulo> ops::$Op<ModInt<M>> for &ModInt<M> {
            type Output = ModInt<M>;
            fn $op(self, rhs: ModInt<M>) -> ModInt<M> {
                (*self).$op(rhs)
            }
        }
        impl<M: Modulo> ops::$Op<&ModInt<M>> for &ModInt<M> {
            type Output = ModInt<M>;
            fn $op(self, rhs: &ModInt<M>) -> ModInt<M> {
                (*self).$op(*rhs)
            }
        }
        impl<M: Modulo> ops::$OpAssign for ModInt<M> {
            fn $op_assign(&mut self, rhs: Self) {
                *self = ops::$Op::$op(*self, rhs);
            }
        }
        impl<M: Modulo> ops::$OpAssign<&ModInt<M>> for ModInt<M> {
            fn $op_assign(&mut self, rhs: &ModInt<M>) {
                self.$op_assign(*rhs);
            }
        })*
    };
}
op_impl! {
    Add add AddAssign add_assign
    Sub sub SubAssign sub_assign
    Mul mul MulAssign mul_assign
    Div div DivAssign div_assign
}
impl<M: Modulo> std::iter::Sum for ModInt<M> {
    fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
        iter.fold(ModInt::new(0), |x, y| x + y)
    }
}
impl<M: Modulo> std::iter::Product for ModInt<M> {
    fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
        iter.fold(ModInt::new(1), |x, y| x * y)
    }
}
pub trait Pow<T> {
    fn pow(self, n: T) -> Self;
}
impl<M: Modulo> Pow<u32> for ModInt<M> {
    fn pow(mut self, mut n: u32) -> Self {
        let mut y = Self::new(1);
        while n > 0 {
            if n % 2 == 1 {
                y *= self;
            }
            self *= self;
            n /= 2;
        }
        y
    }
}
macro_rules! mod_int_pow_impl {
    ($($T:ident)*) => {
        $(impl<M: Modulo> Pow<$T> for ModInt<M> {
            fn pow(self, n: $T) -> Self {
                self.pow(n.rem_euclid(M::modulo() as $T - 1) as u32)
            }
        })*
    };
}
mod_int_pow_impl!(isize i32 i64 usize u64);
macro_rules! mod_int_from_impl {
    ($($T:ident)*) => {
        $(impl<M: Modulo> From<$T> for ModInt<M> {
            #[allow(unused_comparisons)]
            fn from(x: $T) -> Self {
                if M::modulo() <= $T::max_value() as u32 {
                    Self::new(x.rem_euclid(M::modulo() as $T) as u32)
                } else if x < 0 {
                    Self::new((M::modulo() as i32 + x as i32) as u32)
                } else {
                    Self::new(x as u32)
                }
            }
        })*
    }
}
mod_int_from_impl!(isize i8 i16 i32 i64 i128 usize u8 u16 u32 u64 u128);
impl<M> Copy for ModInt<M> {}
impl<M> Clone for ModInt<M> {
    fn clone(&self) -> Self {
        *self
    }
}
impl<M: Modulo> Default for ModInt<M> {
    fn default() -> Self {
        Self::new(0)
    }
}
impl<M> std::cmp::PartialEq for ModInt<M> {
    fn eq(&self, other: &Self) -> bool {
        self.0 == other.0
    }
}
impl<M> std::cmp::Eq for ModInt<M> {}
impl<M> std::cmp::PartialOrd for ModInt<M> {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        self.0.partial_cmp(&other.0)
    }
}
impl<M> std::cmp::Ord for ModInt<M> {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.0.cmp(&other.0)
    }
}
impl<M> std::hash::Hash for ModInt<M> {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        self.0.hash(state);
    }
}
impl<M> fmt::Display for ModInt<M> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.0.fmt(f)
    }
}
impl<M> fmt::Debug for ModInt<M> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("ModInt(")?;
        self.0.fmt(f)?;
        f.pad(")")
    }
}

// -----------------------------------------------------------------------------
fn main() -> io::Result<()> {
    std::thread::Builder::new()
        .stack_size(64 * 1024 * 1024)
        .spawn(|| {
            run(
                KInput::new(io::stdin().lock()),
                io::BufWriter::new(io::stdout().lock()),
            )
        })?
        .join()
        .unwrap();
    Ok(())
}

// -----------------------------------------------------------------------------
pub mod kyoproio {
    use std::{
        io::prelude::*,
        iter::FromIterator,
        marker::PhantomData,
        mem::{self, MaybeUninit},
        ptr, slice, str,
    };

    pub trait Input {
        fn bytes(&mut self) -> &[u8];
        fn str(&mut self) -> &str {
            str::from_utf8(self.bytes()).unwrap()
        }
        fn input<T: InputItem>(&mut self) -> T {
            T::input(self)
        }
        fn iter<T: InputItem>(&mut self) -> Iter<T, Self> {
            Iter(self, PhantomData)
        }
        fn seq<T: InputItem, B: FromIterator<T>>(&mut self, n: usize) -> B {
            self.iter().take(n).collect()
        }
    }
    pub struct KInput<R> {
        src: R,
        buf: Vec<u8>,
        pos: usize,
        len: usize,
    }
    impl<R: Read> KInput<R> {
        pub fn new(src: R) -> Self {
            Self {
                src,
                buf: vec![0; 1 << 16],
                pos: 0,
                len: 0,
            }
        }
        fn read(&mut self) -> usize {
            if self.pos > 0 {
                self.buf.copy_within(self.pos..self.len, 0);
                self.len -= self.pos;
                self.pos = 0;
            } else if self.len >= self.buf.len() {
                self.buf.resize(2 * self.buf.len(), 0);
            }
            let read = self.src.read(&mut self.buf[self.len..]).unwrap();
            self.len += read;
            read
        }
    }
    impl<R: Read> Input for KInput<R> {
        fn bytes(&mut self) -> &[u8] {
            loop {
                while let Some(d) = self.buf[self.pos..self.len]
                    .iter()
                    .position(u8::is_ascii_whitespace)
                {
                    let p = self.pos;
                    self.pos += d + 1;
                    if d > 0 {
                        return &self.buf[p..p + d];
                    }
                }
                if self.read() == 0 {
                    return &self.buf[mem::replace(&mut self.pos, self.len)..self.len];
                }
            }
        }
    }
    pub struct Iter<'a, T, I: ?Sized>(&'a mut I, PhantomData<*const T>);
    impl<'a, T: InputItem, I: Input + ?Sized> Iterator for Iter<'a, T, I> {
        type Item = T;
        fn next(&mut self) -> Option<T> {
            Some(self.0.input())
        }
        fn size_hint(&self) -> (usize, Option<usize>) {
            (!0, None)
        }
    }
    pub trait InputItem: Sized {
        fn input<I: Input + ?Sized>(src: &mut I) -> Self;
    }
    impl InputItem for Vec<u8> {
        fn input<I: Input + ?Sized>(src: &mut I) -> Self {
            src.bytes().to_owned()
        }
    }
    macro_rules! from_str {
        { $($T:ty)* } => {
            $(impl InputItem for $T {
                fn input<I: Input + ?Sized>(src: &mut I) -> Self {
                    src.str().parse::<$T>().unwrap()
                }
            })*
        }
    }
    from_str! { String char bool f32 f64 }
    macro_rules! parse_int {
        { $($I:ty: $U:ty)* } => {
            $(impl InputItem for $I {
                fn input<I: Input + ?Sized>(src: &mut I) -> Self {
                    let f = |s: &[u8]| s.iter().fold(0, |x, b| 10 * x + (b & 0xf) as $I);
                    let s = src.bytes();
                    if let Some((&b'-', t)) = s.split_first() { -f(t) } else { f(s) }
                }
            }
            impl InputItem for $U {
                fn input<I: Input + ?Sized>(src: &mut I) -> Self {
                    src.bytes().iter().fold(0, |x, b| 10 * x + (b & 0xf) as $U)
                }
            })*
        };
    }
    parse_int! { isize:usize i8:u8 i16:u16 i32:u32 i64:u64 i128:u128 }
    macro_rules! tuple {
        ($H:ident $($T:ident)*) => {
            impl<$H: InputItem, $($T: InputItem),*> InputItem for ($H, $($T),*) {
                fn input<I: Input + ?Sized>(src: &mut I) -> Self {
                    ($H::input(src), $($T::input(src)),*)
                }
            }
            tuple!($($T)*);
        };
        () => {}
    }
    tuple!(A B C D E F G);
    macro_rules! array {
        { $($N:literal)* } => {
            $(impl<T: InputItem> InputItem for [T; $N] {
                fn input<I: Input + ?Sized>(src: &mut I) -> Self {
                    let mut arr = MaybeUninit::uninit();
                    let ptr = arr.as_mut_ptr() as *mut T;
                    unsafe {
                        for i in 0..$N {
                            ptr.add(i).write(src.input());
                        }
                        arr.assume_init()
                    }
                }
            })*
        };
    }
    array! { 1 2 3 4 5 6 7 8 }
    pub struct KOutput<W: Write> {
        dest: W,
        delim: bool,
    }
    impl<W: Write> KOutput<W> {
        pub fn new(dest: W) -> Self {
            Self { dest, delim: false }
        }
        pub fn bytes(&mut self, s: &[u8]) {
            self.dest.write_all(s).unwrap();
        }
        pub fn byte(&mut self, b: u8) {
            self.bytes(slice::from_ref(&b));
        }
        pub fn output<T: OutputItem>(&mut self, x: T) {
            if self.delim {
                self.byte(b' ');
            }
            self.delim = true;
            x.output(self);
        }
        pub fn ln(&mut self) {
            self.delim = false;
            self.byte(b'\n');
            self.flush_debug();
        }
        pub fn inner(&mut self) -> &mut W {
            &mut self.dest
        }
        pub fn seq<T: OutputItem, I: IntoIterator<Item = T>>(&mut self, iter: I) {
            for x in iter.into_iter() {
                self.output(x);
            }
        }
        pub fn flush(&mut self) {
            self.dest.flush().unwrap();
        }
        pub fn flush_debug(&mut self) {
            if cfg!(debug_assertions) {
                self.flush();
            }
        }
    }
    pub trait OutputItem {
        fn output<W: Write>(self, dest: &mut KOutput<W>);
    }
    impl OutputItem for &str {
        fn output<W: Write>(self, dest: &mut KOutput<W>) {
            dest.bytes(self.as_bytes());
        }
    }
    impl OutputItem for char {
        fn output<W: Write>(self, dest: &mut KOutput<W>) {
            self.encode_utf8(&mut [0; 4]).output(dest);
        }
    }
    macro_rules! output_fmt {
        ($($T:ty)*) => {
            $(impl OutputItem for $T {
                fn output<W: Write>(self, dest: &mut KOutput<W>) {
                    write!(dest.inner(), "{}", self).unwrap();
                }
            })*
        }
    }
    output_fmt!(f32 f64);
    macro_rules! output_int {
        ($conv:ident; $U:ty; $($T:ty)*) => {
            $(impl OutputItem for $T {
                fn output<W: Write>(self, dest: &mut KOutput<W>) {
                    let mut buf = MaybeUninit::<[u8; 20]>::uninit();
                    unsafe {
                        let ptr = buf.as_mut_ptr() as *mut u8;
                        let ofs = $conv(self as $U, ptr, 20);
                        dest.bytes(slice::from_raw_parts(ptr.add(ofs), 20 - ofs));
                    }
                }
            }
            impl OutputItem for &$T {
                fn output<W: Write>(self, dest: &mut KOutput<W>) {
                    (*self).output(dest);
                }
            })*
        };
    }
    output_int!(i64_to_bytes; i64; isize i8 i16 i32 i64);
    output_int!(u64_to_bytes; u64; usize u8 u16 u32 u64);
    static DIGITS_LUT: &[u8; 200] = b"0001020304050607080910111213141516171819\
        2021222324252627282930313233343536373839\
        4041424344454647484950515253545556575859\
        6061626364656667686970717273747576777879\
        8081828384858687888990919293949596979899";
    unsafe fn i64_to_bytes(x: i64, buf: *mut u8, len: usize) -> usize {
        let (neg, x) = if x < 0 { (true, -x) } else { (false, x) };
        let mut i = u64_to_bytes(x as u64, buf, len);
        if neg {
            i -= 1;
            *buf.add(i) = b'-';
        }
        i
    }
    unsafe fn u64_to_bytes(mut x: u64, buf: *mut u8, len: usize) -> usize {
        let lut = DIGITS_LUT.as_ptr();
        let mut i = len;
        let mut two = |x| {
            i -= 2;
            ptr::copy_nonoverlapping(lut.add(2 * x), buf.add(i), 2);
        };
        while x >= 10000 {
            let rem = (x % 10000) as usize;
            two(rem % 100);
            two(rem / 100);
            x /= 10000;
        }
        let mut x = x as usize;
        if x >= 100 {
            two(x % 100);
            x /= 100;
        }
        if x >= 10 {
            two(x);
        } else {
            i -= 1;
            *buf.add(i) = x as u8 + b'0';
        }
        i
    }
    #[macro_export]
    macro_rules! out {
        ($out:expr, $($args:expr),*) => {{ $($out.output($args);)* }};
    }
    #[macro_export]
    macro_rules! outln {
        ($out:expr) => { $out.ln(); };
        ($out:expr, $($args:expr),*) => {{
            out!($out, $($args),*);
            outln!($out);
        }}
    }
    #[macro_export]
    macro_rules! kdbg {
        ($($v:expr),*) => {
            if cfg!(debug_assertions) { dbg!($($v),*) } else { ($($v),*) }
        }
    }
}
0