結果
| 問題 |
No.368 LCM of K-products
|
| コンテスト | |
| ユーザー |
cotton_fn_
|
| 提出日時 | 2020-12-08 07:25:44 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 19,212 bytes |
| コンパイル時間 | 13,851 ms |
| コンパイル使用メモリ | 378,060 KB |
| 実行使用メモリ | 6,948 KB |
| 最終ジャッジ日時 | 2024-09-17 14:26:19 |
| 合計ジャッジ時間 | 15,156 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 33 RE * 2 |
ソースコード
#![allow(unused_imports, unused_macros)]
use kyoproio::*;
use std::{
collections::*,
io::{self, prelude::*},
iter,
mem::{replace, swap},
};
fn run<I: Input, O: Write>(mut kin: I, out: O) {
let mut out = KOutput::new(out);
let (n, k): (usize, usize) = kin.input();
let ps = primes(32000);
let mut small = vec![vec![]; ps.len()];
let mut large = HashMap::new();
for mut a in kin.iter::<u32>().take(n) {
for (i, &p) in ps.iter().enumerate() {
if a < p as u32 {
break;
}
if a % p as u32 == 0 {
let mut c = 0;
while a % p as u32 == 0 {
c += 1;
a /= p as u32;
}
small[i].push(c);
}
}
if a > 1 {
*large.entry(a as usize).or_insert(0u32) += 1;
}
}
let mut ans = mint(1);
for (i, p) in ps.into_iter().enumerate() {
if k < small[i].len() {
nth_element_by_key(&mut small[i], k - 1, |c| std::cmp::Reverse(*c));
}
let s = small[i].iter().take(k).sum::<u32>();
ans *= mint(p as u32).pow(s);
}
for (p, c) in large {
ans *= mint(p as u32).pow(c.min(k as u32));
}
outln!(out, ans.get());
}
use std::cmp::Ordering;
pub fn nth_element<T: Ord>(a: &mut [T], n: usize) {
nth_element_by(a, n, |x, y| x.cmp(y));
}
pub fn nth_element_by_key<T, K: Ord, F: FnMut(&T) -> K>(a: &mut [T], n: usize, mut f: F) {
nth_element_by(a, n, |x, y| f(x).cmp(&f(y)));
}
pub fn nth_element_by<T, F: FnMut(&T, &T) -> Ordering>(a: &mut [T], n: usize, mut f: F) {
assert!(n < a.len());
let mut l = 0;
let mut r = a.len();
while r - l >= 2 {
let mut pis = [l, (l + r) / 2, r - 1];
pis.sort_by(|i, j| f(&a[*i], &a[*j]));
a.swap(pis[1], r - 1);
let (b, t) = a.split_at_mut(r - 1);
let pivot = &t[0];
let mut i = l;
let mut j = r - 2;
while i <= j {
while i <= j && f(&b[i], pivot) == Ordering::Less {
i += 1;
}
while i <= j && f(&b[j], pivot) == Ordering::Greater {
j -= 1;
}
if i >= j {
break;
}
b.swap(i, j);
i += 1;
j -= 1;
}
a.swap(i, r - 1);
if i < n {
l = i + 1;
} else {
r = i;
}
}
}
pub fn primes(n: usize) -> Vec<usize> {
// 1, 7, 11, 13, 17, 19, 23, 29
const SKIP: [u8; 8] = [6, 4, 2, 4, 2, 4, 6, 2];
const XTOI: [u8; 15] = [0, 0, 0, 1, 0, 2, 3, 0, 4, 5, 0, 6, 0, 0, 7];
let mut sieve = vec![0u8; n / 30 + 1];
let mut ps = vec![2, 3, 5];
if n <= 4 {
ps.truncate([0, 0, 1, 2, 2][n]);
return ps;
}
let mut x = 7;
let mut i = 1;
while x <= n {
if sieve[i / 8] & 1 << i % 8 == 0 {
ps.push(x);
let mut j = i;
let mut y = x * x;
while y <= n {
sieve[y / 30] |= 1 << XTOI[y / 2 % 15];
y += x * SKIP[j % 8] as usize;
j += 1;
}
}
x += SKIP[i % 8] as usize;
i += 1;
}
ps
}
pub type Mint = ModInt<Mod1e9p7>;
pub fn mint(x: u32) -> Mint {
ModInt::new(x)
}
pub trait Modulo {
fn modulo() -> u32;
}
macro_rules! modulo_impl {
($($Type:ident $val:tt)*) => {
$(pub struct $Type;
impl Modulo for $Type {
fn modulo() -> u32 {
$val
}
})*
};
}
modulo_impl!(Mod998244353 998244353 Mod1e9p7 1000000007);
use std::sync::atomic;
pub struct VarMod;
static VAR_MOD: atomic::AtomicU32 = atomic::AtomicU32::new(0);
pub fn set_var_mod(m: u32) {
VAR_MOD.store(m, atomic::Ordering::Relaxed);
}
impl Modulo for VarMod {
fn modulo() -> u32 {
VAR_MOD.load(atomic::Ordering::Relaxed)
}
}
use std::{fmt, marker::PhantomData, ops};
pub struct ModInt<M>(u32, PhantomData<M>);
impl<M: Modulo> ModInt<M> {
pub fn new(x: u32) -> Self {
debug_assert!(x < M::modulo());
Self(x, PhantomData)
}
pub fn normalize(self) -> Self {
if self.0 < M::modulo() {
self
} else {
Self::new(self.0 % M::modulo())
}
}
pub fn get(self) -> u32 {
self.0
}
pub fn inv(self) -> Self {
self.pow(M::modulo() - 2)
}
pub fn half(self) -> Self {
Self::new(self.0 / 2 + self.0 % 2 * ((M::modulo() + 1) / 2))
}
pub fn modulo() -> u32 {
M::modulo()
}
}
impl<M: Modulo> ops::Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self {
Self::new(if self.0 == 0 { 0 } else { M::modulo() - self.0 })
}
}
impl<M: Modulo> ops::Add for ModInt<M> {
type Output = Self;
fn add(self, rhs: Self) -> Self {
let s = self.0 + rhs.0;
Self::new(if s < M::modulo() { s } else { s - M::modulo() })
}
}
impl<M: Modulo> ops::Sub for ModInt<M> {
type Output = Self;
fn sub(self, rhs: Self) -> Self {
Self::new(if self.0 >= rhs.0 {
self.0 - rhs.0
} else {
M::modulo() + self.0 - rhs.0
})
}
}
impl<M: Modulo> ops::Mul for ModInt<M> {
type Output = Self;
fn mul(self, rhs: Self) -> Self {
Self::new((self.0 as u64 * rhs.0 as u64 % M::modulo() as u64) as u32)
}
}
impl<M: Modulo> ops::Div for ModInt<M> {
type Output = Self;
fn div(self, rhs: Self) -> Self {
assert_ne!(rhs.get(), 0);
self * rhs.inv()
}
}
macro_rules! op_impl {
($($Op:ident $op:ident $OpAssign:ident $op_assign:ident)*) => {
$(impl<M: Modulo> ops::$Op<&Self> for ModInt<M> {
type Output = Self;
fn $op(self, rhs: &Self) -> Self {
self.$op(*rhs)
}
}
impl<M: Modulo> ops::$Op<ModInt<M>> for &ModInt<M> {
type Output = ModInt<M>;
fn $op(self, rhs: ModInt<M>) -> ModInt<M> {
(*self).$op(rhs)
}
}
impl<M: Modulo> ops::$Op<&ModInt<M>> for &ModInt<M> {
type Output = ModInt<M>;
fn $op(self, rhs: &ModInt<M>) -> ModInt<M> {
(*self).$op(*rhs)
}
}
impl<M: Modulo> ops::$OpAssign for ModInt<M> {
fn $op_assign(&mut self, rhs: Self) {
*self = ops::$Op::$op(*self, rhs);
}
}
impl<M: Modulo> ops::$OpAssign<&ModInt<M>> for ModInt<M> {
fn $op_assign(&mut self, rhs: &ModInt<M>) {
self.$op_assign(*rhs);
}
})*
};
}
op_impl! {
Add add AddAssign add_assign
Sub sub SubAssign sub_assign
Mul mul MulAssign mul_assign
Div div DivAssign div_assign
}
impl<M: Modulo> std::iter::Sum for ModInt<M> {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(ModInt::new(0), |x, y| x + y)
}
}
impl<M: Modulo> std::iter::Product for ModInt<M> {
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(ModInt::new(1), |x, y| x * y)
}
}
pub trait Pow<T> {
fn pow(self, n: T) -> Self;
}
impl<M: Modulo> Pow<u32> for ModInt<M> {
fn pow(mut self, mut n: u32) -> Self {
let mut y = Self::new(1);
while n > 0 {
if n % 2 == 1 {
y *= self;
}
self *= self;
n /= 2;
}
y
}
}
macro_rules! mod_int_pow_impl {
($($T:ident)*) => {
$(impl<M: Modulo> Pow<$T> for ModInt<M> {
fn pow(self, n: $T) -> Self {
self.pow(n.rem_euclid(M::modulo() as $T - 1) as u32)
}
})*
};
}
mod_int_pow_impl!(isize i32 i64 usize u64);
macro_rules! mod_int_from_impl {
($($T:ident)*) => {
$(impl<M: Modulo> From<$T> for ModInt<M> {
#[allow(unused_comparisons)]
fn from(x: $T) -> Self {
if M::modulo() <= $T::max_value() as u32 {
Self::new(x.rem_euclid(M::modulo() as $T) as u32)
} else if x < 0 {
Self::new((M::modulo() as i32 + x as i32) as u32)
} else {
Self::new(x as u32)
}
}
})*
}
}
mod_int_from_impl!(isize i8 i16 i32 i64 i128 usize u8 u16 u32 u64 u128);
impl<M> Copy for ModInt<M> {}
impl<M> Clone for ModInt<M> {
fn clone(&self) -> Self {
*self
}
}
impl<M: Modulo> Default for ModInt<M> {
fn default() -> Self {
Self::new(0)
}
}
impl<M> std::cmp::PartialEq for ModInt<M> {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl<M> std::cmp::Eq for ModInt<M> {}
impl<M> std::cmp::PartialOrd for ModInt<M> {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
self.0.partial_cmp(&other.0)
}
}
impl<M> std::cmp::Ord for ModInt<M> {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.0.cmp(&other.0)
}
}
impl<M> std::hash::Hash for ModInt<M> {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.0.hash(state);
}
}
impl<M> fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
impl<M> fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("ModInt(")?;
self.0.fmt(f)?;
f.pad(")")
}
}
// -----------------------------------------------------------------------------
fn main() -> io::Result<()> {
std::thread::Builder::new()
.stack_size(64 * 1024 * 1024)
.spawn(|| {
run(
KInput::new(io::stdin().lock()),
io::BufWriter::new(io::stdout().lock()),
)
})?
.join()
.unwrap();
Ok(())
}
// -----------------------------------------------------------------------------
pub mod kyoproio {
use std::{
io::prelude::*,
iter::FromIterator,
marker::PhantomData,
mem::{self, MaybeUninit},
ptr, slice, str,
};
pub trait Input {
fn bytes(&mut self) -> &[u8];
fn str(&mut self) -> &str {
str::from_utf8(self.bytes()).unwrap()
}
fn input<T: InputItem>(&mut self) -> T {
T::input(self)
}
fn iter<T: InputItem>(&mut self) -> Iter<T, Self> {
Iter(self, PhantomData)
}
fn seq<T: InputItem, B: FromIterator<T>>(&mut self, n: usize) -> B {
self.iter().take(n).collect()
}
}
pub struct KInput<R> {
src: R,
buf: Vec<u8>,
pos: usize,
len: usize,
}
impl<R: Read> KInput<R> {
pub fn new(src: R) -> Self {
Self {
src,
buf: vec![0; 1 << 16],
pos: 0,
len: 0,
}
}
fn read(&mut self) -> usize {
if self.pos > 0 {
self.buf.copy_within(self.pos..self.len, 0);
self.len -= self.pos;
self.pos = 0;
} else if self.len >= self.buf.len() {
self.buf.resize(2 * self.buf.len(), 0);
}
let read = self.src.read(&mut self.buf[self.len..]).unwrap();
self.len += read;
read
}
}
impl<R: Read> Input for KInput<R> {
fn bytes(&mut self) -> &[u8] {
loop {
while let Some(d) = self.buf[self.pos..self.len]
.iter()
.position(u8::is_ascii_whitespace)
{
let p = self.pos;
self.pos += d + 1;
if d > 0 {
return &self.buf[p..p + d];
}
}
if self.read() == 0 {
return &self.buf[mem::replace(&mut self.pos, self.len)..self.len];
}
}
}
}
pub struct Iter<'a, T, I: ?Sized>(&'a mut I, PhantomData<*const T>);
impl<'a, T: InputItem, I: Input + ?Sized> Iterator for Iter<'a, T, I> {
type Item = T;
fn next(&mut self) -> Option<T> {
Some(self.0.input())
}
fn size_hint(&self) -> (usize, Option<usize>) {
(!0, None)
}
}
pub trait InputItem: Sized {
fn input<I: Input + ?Sized>(src: &mut I) -> Self;
}
impl InputItem for Vec<u8> {
fn input<I: Input + ?Sized>(src: &mut I) -> Self {
src.bytes().to_owned()
}
}
macro_rules! from_str {
{ $($T:ty)* } => {
$(impl InputItem for $T {
fn input<I: Input + ?Sized>(src: &mut I) -> Self {
src.str().parse::<$T>().unwrap()
}
})*
}
}
from_str! { String char bool f32 f64 }
macro_rules! parse_int {
{ $($I:ty: $U:ty)* } => {
$(impl InputItem for $I {
fn input<I: Input + ?Sized>(src: &mut I) -> Self {
let f = |s: &[u8]| s.iter().fold(0, |x, b| 10 * x + (b & 0xf) as $I);
let s = src.bytes();
if let Some((&b'-', t)) = s.split_first() { -f(t) } else { f(s) }
}
}
impl InputItem for $U {
fn input<I: Input + ?Sized>(src: &mut I) -> Self {
src.bytes().iter().fold(0, |x, b| 10 * x + (b & 0xf) as $U)
}
})*
};
}
parse_int! { isize:usize i8:u8 i16:u16 i32:u32 i64:u64 i128:u128 }
macro_rules! tuple {
($H:ident $($T:ident)*) => {
impl<$H: InputItem, $($T: InputItem),*> InputItem for ($H, $($T),*) {
fn input<I: Input + ?Sized>(src: &mut I) -> Self {
($H::input(src), $($T::input(src)),*)
}
}
tuple!($($T)*);
};
() => {}
}
tuple!(A B C D E F G);
macro_rules! array {
{ $($N:literal)* } => {
$(impl<T: InputItem> InputItem for [T; $N] {
fn input<I: Input + ?Sized>(src: &mut I) -> Self {
let mut arr = MaybeUninit::uninit();
let ptr = arr.as_mut_ptr() as *mut T;
unsafe {
for i in 0..$N {
ptr.add(i).write(src.input());
}
arr.assume_init()
}
}
})*
};
}
array! { 1 2 3 4 5 6 7 8 }
pub struct KOutput<W: Write> {
dest: W,
delim: bool,
}
impl<W: Write> KOutput<W> {
pub fn new(dest: W) -> Self {
Self { dest, delim: false }
}
pub fn bytes(&mut self, s: &[u8]) {
self.dest.write_all(s).unwrap();
}
pub fn byte(&mut self, b: u8) {
self.bytes(slice::from_ref(&b));
}
pub fn output<T: OutputItem>(&mut self, x: T) {
if self.delim {
self.byte(b' ');
}
self.delim = true;
x.output(self);
}
pub fn ln(&mut self) {
self.delim = false;
self.byte(b'\n');
self.flush_debug();
}
pub fn inner(&mut self) -> &mut W {
&mut self.dest
}
pub fn seq<T: OutputItem, I: IntoIterator<Item = T>>(&mut self, iter: I) {
for x in iter.into_iter() {
self.output(x);
}
}
pub fn flush(&mut self) {
self.dest.flush().unwrap();
}
pub fn flush_debug(&mut self) {
if cfg!(debug_assertions) {
self.flush();
}
}
}
pub trait OutputItem {
fn output<W: Write>(self, dest: &mut KOutput<W>);
}
impl OutputItem for &str {
fn output<W: Write>(self, dest: &mut KOutput<W>) {
dest.bytes(self.as_bytes());
}
}
impl OutputItem for char {
fn output<W: Write>(self, dest: &mut KOutput<W>) {
self.encode_utf8(&mut [0; 4]).output(dest);
}
}
macro_rules! output_fmt {
($($T:ty)*) => {
$(impl OutputItem for $T {
fn output<W: Write>(self, dest: &mut KOutput<W>) {
write!(dest.inner(), "{}", self).unwrap();
}
})*
}
}
output_fmt!(f32 f64);
macro_rules! output_int {
($conv:ident; $U:ty; $($T:ty)*) => {
$(impl OutputItem for $T {
fn output<W: Write>(self, dest: &mut KOutput<W>) {
let mut buf = MaybeUninit::<[u8; 20]>::uninit();
unsafe {
let ptr = buf.as_mut_ptr() as *mut u8;
let ofs = $conv(self as $U, ptr, 20);
dest.bytes(slice::from_raw_parts(ptr.add(ofs), 20 - ofs));
}
}
}
impl OutputItem for &$T {
fn output<W: Write>(self, dest: &mut KOutput<W>) {
(*self).output(dest);
}
})*
};
}
output_int!(i64_to_bytes; i64; isize i8 i16 i32 i64);
output_int!(u64_to_bytes; u64; usize u8 u16 u32 u64);
static DIGITS_LUT: &[u8; 200] = b"0001020304050607080910111213141516171819\
2021222324252627282930313233343536373839\
4041424344454647484950515253545556575859\
6061626364656667686970717273747576777879\
8081828384858687888990919293949596979899";
unsafe fn i64_to_bytes(x: i64, buf: *mut u8, len: usize) -> usize {
let (neg, x) = if x < 0 { (true, -x) } else { (false, x) };
let mut i = u64_to_bytes(x as u64, buf, len);
if neg {
i -= 1;
*buf.add(i) = b'-';
}
i
}
unsafe fn u64_to_bytes(mut x: u64, buf: *mut u8, len: usize) -> usize {
let lut = DIGITS_LUT.as_ptr();
let mut i = len;
let mut two = |x| {
i -= 2;
ptr::copy_nonoverlapping(lut.add(2 * x), buf.add(i), 2);
};
while x >= 10000 {
let rem = (x % 10000) as usize;
two(rem % 100);
two(rem / 100);
x /= 10000;
}
let mut x = x as usize;
if x >= 100 {
two(x % 100);
x /= 100;
}
if x >= 10 {
two(x);
} else {
i -= 1;
*buf.add(i) = x as u8 + b'0';
}
i
}
#[macro_export]
macro_rules! out {
($out:expr, $($args:expr),*) => {{ $($out.output($args);)* }};
}
#[macro_export]
macro_rules! outln {
($out:expr) => { $out.ln(); };
($out:expr, $($args:expr),*) => {{
out!($out, $($args),*);
outln!($out);
}}
}
#[macro_export]
macro_rules! kdbg {
($($v:expr),*) => {
if cfg!(debug_assertions) { dbg!($($v),*) } else { ($($v),*) }
}
}
}
cotton_fn_