結果
問題 | No.1311 Reverse Permutation Index |
ユーザー | null |
提出日時 | 2020-12-08 15:56:58 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 1,500 ms |
コード長 | 4,117 bytes |
コンパイル時間 | 1,477 ms |
コンパイル使用メモリ | 146,652 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-17 14:42:34 |
合計ジャッジ時間 | 1,968 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,944 KB |
ソースコード
/* このコード、と~おれ! Be accepted! ∧_∧ (。・ω・。)つ━☆・*。 ⊂ ノ ・゜+. しーJ °。+ *´¨) .· ´¸.·*´¨) ¸.·*¨) (¸.·´ (¸.·'* ☆ */ #include <cstdio> #include <algorithm> #include <string> #include <cmath> #include <cstring> #include <vector> #include <numeric> #include <iostream> #include <random> #include <map> #include <unordered_map> #include <queue> #include <regex> #include <functional> #include <complex> #include <list> #include <cassert> #include <iomanip> #include <set> #include <stack> #include <bitset> ////多倍長整数, cpp_intで宣言 //#include <boost/multiprecision/cpp_int.hpp> //using namespace boost::multiprecision; //#pragma GCC target ("avx2") //#pragma GCC optimization ("Ofast") //#pragma GCC optimization ("unroll-loops") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #define repeat(i, n, m) for(int i = n; i < (m); ++i) #define rep(i, n) for(int i = 0; i < (n); ++i) #define printynl(a) printf(a ? "yes\n" : "no\n") #define printyn(a) printf(a ? "Yes\n" : "No\n") #define printYN(a) printf(a ? "YES\n" : "NO\n") #define printim(a) printf(a ? "possible\n" : "imposible\n") #define printdb(a) printf("%.50lf\n", a) //少数出力 #define printLdb(a) printf("%.50Lf\n", a) //少数出力 #define printdbd(a) printf("%.16lf\n", a) //少数出力(桁少なめ) #define prints(s) printf("%s\n", s.c_str()) //string出力 #define all(x) (x).begin(), (x).end() #define deg_to_rad(deg) (((deg)/360.0L)*2.0L*PI) #define rad_to_deg(rad) (((rad)/2.0L/PI)*360.0L) #define Please return #define AC 0 #define manhattan_dist(a, b, c, d) (abs(a - c) + abs(b - d)) /*(a, b) から (c, d) のマンハッタン距離 */ #define inf numeric_limits<double>::infinity(); #define linf numeric_limits<long double>::infinity() using ll = long long; using ull = unsigned long long; constexpr int INF = 1073741823; constexpr int MINF = -1073741823; constexpr ll LINF = ll(4661686018427387903); constexpr ll MOD = 1e9 + 7; constexpr ll mod = 998244353; constexpr long double eps = 1e-6; const long double PI = acos(-1.0L); using namespace std; void scans(string& str) { char c; str = ""; scanf("%c", &c); if (c == '\n')scanf("%c", &c); while (c != '\n' && c != -1 && c != ' ') { str += c; scanf("%c", &c); } } void scanc(char& str) { char c; scanf("%c", &c); if (c == -1)return; while (c == '\n') { scanf("%c", &c); } str = c; } double acot(double x) { return PI / 2 - atan(x); } ll LSB(ll n) { return (n & (-n)); } template<typename T> inline T chmin(T& a, const T& b) { if (a > b)a = b; return a; } template<typename T> inline T chmax(T& a, const T& b) { if (a < b)a = b; return a; } /*-----------------------------------------ここから コード-----------------------------------------*/ template<typename T> //0-indexed/内部的に 1-indexed struct BIT { vector<T> tree; //初期化 BIT(ll n) : tree(n) { tree.assign(n + 1, 0); } //[0, n) の sum を返す/0-indexed T sum(ll n) { T ret = 0; //実は 1-indexed だが半開区間なので見た目がそのまま for (; n >= 0; n -= LSB(n)) { ret += tree[n]; if (!n)break; } return ret; } //n 番目に x を足す void add(ll n, T x) { ll siz = tree.size(); for (++n; n < siz; n += LSB(n))tree[n] += x; } }; int main() { ll n; int s; scanf("%lld%d", &n, &s); vector<ll> a, b, c, f(s + 1), e(s); rep(i, s)b.push_back(i); ll num = n, d; for(ll i = 1; i <= s; ++i){ d = num % i; c.push_back(d); num = num / i; } reverse(all(c)); for(const auto &aa: c){ a.push_back(b[aa]); b.erase(b.begin() + aa); } rep(i, s){ e[a[i]] = i + 1; } a = e; f[0] = 1; rep(i, s){ f[i + 1] = (f[i] * (ll)(i + 1)); } BIT<ll> tree(s + 1); ll ans = 0, tmp; rep(i, s) { tmp = (a[i] - 1 - tree.sum(a[i])); tmp *= f[s - i - 1]; ans += tmp; //cerr << (a[i] - 1 - tree.sum(a[i])) * facctorialMethod(n - i - 1) << endl; tree.add(a[i], 1); } printf("%lld\n", ans); Please AC; }