結果
| 問題 |
No.1308 ジャンプビーコン
|
| コンテスト | |
| ユーザー |
kcvlex
|
| 提出日時 | 2020-12-08 19:12:26 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 10,016 bytes |
| コンパイル時間 | 1,930 ms |
| コンパイル使用メモリ | 169,168 KB |
| 最終ジャッジ日時 | 2025-01-16 19:49:21 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 4 WA * 2 RE * 26 TLE * 5 |
ソースコード
#include <limits>
#include <initializer_list>
#include <utility>
#include <bitset>
#include <tuple>
#include <type_traits>
#include <functional>
#include <string>
#include <array>
#include <deque>
#include <list>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <iterator>
#include <algorithm>
#include <complex>
#include <random>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <regex>
#include <cassert>
#include <cstddef>
#include <variant>
#define endl codeforces
#define ALL(v) std::begin(v), std::end(v)
#define ALLR(v) std::rbegin(v), std::rend(v)
using ll = std::int64_t;
using ull = std::uint64_t;
using pii = std::pair<int, int>;
using tii = std::tuple<int, int, int>;
using pll = std::pair<ll, ll>;
using tll = std::tuple<ll, ll, ll>;
using size_type = ssize_t;
template <typename T> using vec = std::vector<T>;
template <typename T> using vvec = vec<vec<T>>;
template <typename T> const T& var_min(const T &t) { return t; }
template <typename T> const T& var_max(const T &t) { return t; }
template <typename T, typename... Tail> const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); }
template <typename T, typename... Tail> const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); }
template <typename T, typename... Tail> void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); }
template <typename T, typename... Tail> void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); }
template <typename T, std::size_t Head, std::size_t... Tail>
struct multi_dim_array { using type = std::array<typename multi_dim_array<T, Tail...>::type, Head>; };
template <typename T, std::size_t Head>
struct multi_dim_array<T, Head> { using type = std::array<T, Head>; };
template <typename T, std::size_t... Args> using mdarray = typename multi_dim_array<T, Args...>::type;
template <typename T, typename F, typename... Args>
void fill_seq(T &t, F f, Args... args) {
if constexpr (std::is_invocable<F, Args...>::value) {
t = f(args...);
} else {
for (size_type i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i);
}
}
template <typename T> vec<T> make_v(size_type sz) { return vec<T>(sz); }
template <typename T, typename... Tail>
auto make_v(size_type hs, Tail&&... ts) {
auto v = std::move(make_v<T>(std::forward<Tail>(ts)...));
return vec<decltype(v)>(hs, v);
}
namespace init__ {
struct InitIO {
InitIO() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << std::fixed << std::setprecision(30);
}
} init_io;
}
template <typename T>
T ceil_pow2(T bound) {
T ret = 1;
while (ret < bound) ret *= 2;
return ret;
}
template <typename T>
T ceil_div(T a, T b) { return a / b + !!(a % b); }
namespace graph {
using Node = ll;
using Weight = ll;
using Edge = std::pair<Node, Weight>;
template <bool Directed>
struct Graph : public vvec<Edge> {
using vvec<Edge>::vvec;
void add_edge(Node f, Node t, Weight w = 1) {
(*this)[f].emplace_back(t, w);
if (!Directed) (*this)[t].emplace_back(f, w);
}
Graph<Directed> build_inv() const {
Graph<Directed> ret(this->size());
for (Node i = 0; i < this->size(); i++) {
for (const Edge &e : (*this)[i]) {
Node j;
Weight w;
std::tie(j, w) = e;
if (!Directed && j < i) continue;
ret.add_edge(j, i, w);
}
}
return ret;
}
};
template <typename Iterator>
class dst_iterator {
Iterator ite;
public:
dst_iterator(Iterator ite) : ite(ite) { }
bool operator ==(const dst_iterator<Iterator> &oth) const {
return ite == oth.ite;
}
bool operator !=(const dst_iterator<Iterator> &oth) const {
return !(*this == oth);
}
bool operator <(const dst_iterator<Iterator> &oth) const {
return ite < oth.ite;
}
bool operator >(const dst_iterator<Iterator> &oth) const {
return ite > oth.ite;
}
bool operator <=(const dst_iterator<Iterator> &oth) const {
return ite <= oth.ite;
}
bool operator >=(const dst_iterator<Iterator> &oth) const {
return ite >= oth.ite;
}
const Node& operator *() {
return ite->first;
}
const Node& operator *() const {
return ite->first;
}
dst_iterator operator ++() {
++ite;
return ite;
}
};
class dst_iteration {
using ite_type = vec<Edge>::const_iterator;
const vec<Edge> &edges;
public:
dst_iteration(const vec<Edge> &edges) : edges(edges) { }
auto begin() const {
return dst_iterator<ite_type>(edges.cbegin());
}
auto end() const {
return dst_iterator<ite_type>(edges.cend());
}
};
class dst_reverse_iteration {
using ite_type = vec<Edge>::const_reverse_iterator;
const vec<Edge> &edges;
public:
dst_reverse_iteration(const vec<Edge> &edges) : edges(edges) { }
auto begin() const {
return dst_iterator<ite_type>(edges.crbegin());
}
auto end() const {
return dst_iterator<ite_type>(edges.crend());
}
};
dst_iteration dst(const vec<Edge> &edges) {
return dst_iteration(edges);
}
dst_reverse_iteration rdst(const vec<Edge> &edges) {
return dst_reverse_iteration(edges);
}
}
namespace tree {
struct LCA {
using node_type = int;
const size_type sz;
const node_type root;
template <typename Graph>
LCA(const Graph &g, node_type root_arg)
: sz(g.size()), root(root_arg), depth(sz), par(sz)
{
dfs(root, dummy, 0, g);
std::fill(ALL(par[root]), dummy);
for (int d = 0; d + 1 < log_sz; d++) for (int i = 0; i < sz; i++) {
int p = par[i][d];
par[i][d + 1] = (p == dummy ? dummy : par[p][d]);
}
}
int get_depth(node_type i) const {
return depth[i];
}
node_type operator()(node_type a, node_type b) const {
if (depth[a] < depth[b]) std::swap(a, b);
a = get_parent(a, depth[a] - depth[b]);
for (int d = log_sz - 1; 0 <= d; d--) {
auto p1 = get_parent(a, d), p2 = get_parent(b, d);
if (p1 != p2) {
a = p1;
b = p2;
}
}
return par[a][0];
}
private:
static constexpr size_type log_sz = 30;
static constexpr node_type dummy = -1;
vec<int> depth;
vec<std::array<node_type, log_sz>> par;
node_type get_parent(node_type a, int d) const {
for (int i = 0; d; i++, d /= 2) {
if (a == dummy) return dummy;
if (d & 1) a = par[a][d];
}
return a;
}
template <typename Graph>
void dfs(node_type cur, node_type pre, ll d, const Graph &g) {
par[cur][0] = pre;
depth[cur] = d;
for (auto nxt : graph::dst(g[cur])) {
if (nxt == pre) continue;
dfs(nxt, cur, d + 1, g);
}
}
};
}
struct Solver {
ll n, q, c;
graph::Graph<false> tree;
vec<ll> xv;
vvec<ll> dists, dp;
const ll inf = 5e15;
Solver(ll n, ll q, ll c)
: n(n), q(q), c(c), tree(n), xv(q),
dists(std::move(make_v<ll>(n, n))), dp(std::move(make_v<ll>(q, n)))
{
for (ll i = 1; i < n; i++) {
ll u, v, l;
std::cin >> u >> v >> l;
tree.add_edge(u - 1, v - 1, l);
}
for (ll &e : xv) {
std::cin >> e;
e--;
}
fill_seq(dp, [&](ll i, ll j) { return (i == 0 && j == xv[0]) ? 0 : inf; });
calc_dists();
}
void calc_dists() {
fill_seq(dists, [&](ll i, ll j) { return i == j ? 0 : -1; });
{
vec<pll> path = { pll(0, 0) };
dfs(0, path, 0);
}
tree::LCA lca(tree, 0);
for (ll i = 0; i < n; i++) for (ll j = i + 1; j < n; j++) {
if (dists[i][j] != -1) continue;
ll p = lca(i, j);
dists[i][j] = dists[j][i] = dists[p][i] + dists[p][j];
}
}
void dfs(ll cur, vec<pll> &path, ll sum) {
for (auto [ p, d ] : path) dists[cur][p] = dists[p][cur] = sum + d;
auto pre = path.back().first;
path.emplace_back(cur, -sum);
for (auto [ nxt, cost ] : tree[cur]) {
if (nxt == pre) continue;
dfs(nxt, path, sum + cost);
}
path.pop_back();
}
void update(ll idx) {
const ll src = xv[idx], dst = xv[idx + 1];
graph::Graph<true> g(n + 1);
for (ll i = 0; i < n; i++) {
g.add_edge(n, i, dp[idx][i] + std::min(c, dists[src][i]));
for (auto [ j, c ] : tree[i]) {
g.add_edge(i, j, c);
g.add_edge(j, i, c);
}
}
vec<ll> dv(n + 1, inf);
dv[n] = 0;
std::priority_queue<pll, vec<pll>, std::greater<pll>> pq;
pq.emplace(0, n);
while (pq.size()) {
auto [ d, cur ] = pq.top();
pq.pop();
if (dv[cur] < d) continue;
for (auto [ nxt, cost ] : g[cur]) {
ll nd = d + cost;
if (dv[nxt] <= nd) continue;
dv[nxt] = nd;
pq.emplace(nd, nxt);
}
}
// don't jump
for (ll i = 0; i < n; i++) {
chmin(dp[idx + 1][i], dp[idx][i] + dists[src][dst]);
}
// jump
for (ll i = 0; i < n; i++) {
chmin(dp[idx + 1][i], dv[i] + dists[i][dst]);
}
}
ll solve() {
for (ll i = 0; i + 1 < q; i++) update(i);
return *std::min_element(ALL(dp[q - 1]));
}
};
int main() {
ll n, q, c;
std::cin >> n >> q >> c;
Solver solver(n, q, c);
std::cout << solver.solve() << "\n";
return 0;
}
kcvlex