結果
問題 | No.1308 ジャンプビーコン |
ユーザー | kcvlex |
提出日時 | 2020-12-08 20:02:07 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2,854 ms / 4,000 ms |
コード長 | 7,825 bytes |
コンパイル時間 | 1,923 ms |
コンパイル使用メモリ | 163,872 KB |
最終ジャッジ日時 | 2025-01-16 19:54:49 |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 37 |
ソースコード
#include <limits> #include <initializer_list> #include <utility> #include <bitset> #include <tuple> #include <type_traits> #include <functional> #include <string> #include <array> #include <deque> #include <list> #include <queue> #include <stack> #include <vector> #include <map> #include <set> #include <unordered_map> #include <unordered_set> #include <iterator> #include <algorithm> #include <complex> #include <random> #include <numeric> #include <iostream> #include <iomanip> #include <sstream> #include <regex> #include <cassert> #include <cstddef> #include <variant> #define endl codeforces #define ALL(v) std::begin(v), std::end(v) #define ALLR(v) std::rbegin(v), std::rend(v) using ll = std::int64_t; using ull = std::uint64_t; using pii = std::pair<int, int>; using tii = std::tuple<int, int, int>; using pll = std::pair<ll, ll>; using tll = std::tuple<ll, ll, ll>; using size_type = ssize_t; template <typename T> using vec = std::vector<T>; template <typename T> using vvec = vec<vec<T>>; template <typename T> const T& var_min(const T &t) { return t; } template <typename T> const T& var_max(const T &t) { return t; } template <typename T, typename... Tail> const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); } template <typename T, typename... Tail> const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); } template <typename T, typename... Tail> void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); } template <typename T, typename... Tail> void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); } template <typename T, std::size_t Head, std::size_t... Tail> struct multi_dim_array { using type = std::array<typename multi_dim_array<T, Tail...>::type, Head>; }; template <typename T, std::size_t Head> struct multi_dim_array<T, Head> { using type = std::array<T, Head>; }; template <typename T, std::size_t... Args> using mdarray = typename multi_dim_array<T, Args...>::type; template <typename T, typename F, typename... Args> void fill_seq(T &t, F f, Args... args) { if constexpr (std::is_invocable<F, Args...>::value) { t = f(args...); } else { for (size_type i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i); } } template <typename T> vec<T> make_v(size_type sz) { return vec<T>(sz); } template <typename T, typename... Tail> auto make_v(size_type hs, Tail&&... ts) { auto v = std::move(make_v<T>(std::forward<Tail>(ts)...)); return vec<decltype(v)>(hs, v); } namespace init__ { struct InitIO { InitIO() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(30); } } init_io; } template <typename T> T ceil_pow2(T bound) { T ret = 1; while (ret < bound) ret *= 2; return ret; } template <typename T> T ceil_div(T a, T b) { return a / b + !!(a % b); } namespace graph { using Node = ll; using Weight = ll; using Edge = std::pair<Node, Weight>; template <bool Directed> struct Graph : public vvec<Edge> { using vvec<Edge>::vvec; void add_edge(Node f, Node t, Weight w = 1) { (*this)[f].emplace_back(t, w); if (!Directed) (*this)[t].emplace_back(f, w); } Graph<Directed> build_inv() const { Graph<Directed> ret(this->size()); for (Node i = 0; i < this->size(); i++) { for (const Edge &e : (*this)[i]) { Node j; Weight w; std::tie(j, w) = e; if (!Directed && j < i) continue; ret.add_edge(j, i, w); } } return ret; } }; template <typename Iterator> class dst_iterator { Iterator ite; public: dst_iterator(Iterator ite) : ite(ite) { } bool operator ==(const dst_iterator<Iterator> &oth) const { return ite == oth.ite; } bool operator !=(const dst_iterator<Iterator> &oth) const { return !(*this == oth); } bool operator <(const dst_iterator<Iterator> &oth) const { return ite < oth.ite; } bool operator >(const dst_iterator<Iterator> &oth) const { return ite > oth.ite; } bool operator <=(const dst_iterator<Iterator> &oth) const { return ite <= oth.ite; } bool operator >=(const dst_iterator<Iterator> &oth) const { return ite >= oth.ite; } const Node& operator *() { return ite->first; } const Node& operator *() const { return ite->first; } dst_iterator operator ++() { ++ite; return ite; } }; class dst_iteration { using ite_type = vec<Edge>::const_iterator; const vec<Edge> &edges; public: dst_iteration(const vec<Edge> &edges) : edges(edges) { } auto begin() const { return dst_iterator<ite_type>(edges.cbegin()); } auto end() const { return dst_iterator<ite_type>(edges.cend()); } }; class dst_reverse_iteration { using ite_type = vec<Edge>::const_reverse_iterator; const vec<Edge> &edges; public: dst_reverse_iteration(const vec<Edge> &edges) : edges(edges) { } auto begin() const { return dst_iterator<ite_type>(edges.crbegin()); } auto end() const { return dst_iterator<ite_type>(edges.crend()); } }; dst_iteration dst(const vec<Edge> &edges) { return dst_iteration(edges); } dst_reverse_iteration rdst(const vec<Edge> &edges) { return dst_reverse_iteration(edges); } } struct Solver { ll n, q, c; graph::Graph<false> tree; vec<ll> xv, dv; vvec<ll> dp, dists; std::priority_queue<pll, vec<pll>, std::greater<pll>> pq; const ll inf = 5e15; Solver(ll n, ll q, ll c) : n(n), q(q), c(c), tree(n), xv(q), dv(n, inf), dp(std::move(make_v<ll>(q, n))), dists(n) { for (ll i = 1; i < n; i++) { ll u, v, l; std::cin >> u >> v >> l; tree.add_edge(u - 1, v - 1, l); } for (ll &e : xv) { std::cin >> e; e--; } fill_seq(dp, [&](ll i, ll j) { return (i == 0 && j == xv[0]) ? 0 : inf; }); } void dfs(ll cur, ll pre, ll d, vec<ll> &dist) { dist[cur] = d; for (auto [ nxt, cost ] : tree[cur]) { if (nxt == pre) continue; dfs(nxt, cur, d + cost, dist); } } void make_dist(ll root) { if (!dists[root].empty()) return; dists[root].resize(n); dfs(root, -1, 0, dists[root]); } void update(const ll idx) { const ll src = xv[idx], dst = xv[idx + 1]; make_dist(src); make_dist(dst); const auto &d_src = dists[src]; const auto &d_dst = dists[dst]; for (ll i = 0; i < n; i++) { ll d = dp[idx][i] + std::min(d_src[i], c); dv[i] = d; pq.emplace(d, i); } while (pq.size()) { auto [ d, cur ] = pq.top(); pq.pop(); if (dv[cur] < d) continue; for (auto [ nxt, cost ] : tree[cur]) { ll nd = d + cost; if (dv[nxt] <= nd) continue; dv[nxt] = nd; pq.emplace(nd, nxt); } } // don't jump auto tmp = d_src[dst]; for (ll i = 0; i < n; i++) { chmin(dp[idx + 1][i], dp[idx][i] + tmp); } // jump for (ll i = 0; i < n; i++) { chmin(dp[idx + 1][i], dv[i] + d_dst[i]); } } ll solve() { for (ll i = 0; i + 1 < q; i++) update(i); return *std::min_element(ALL(dp[q - 1])); } }; int main() { ll n, q, c; std::cin >> n >> q >> c; Solver solver(n, q, c); std::cout << solver.solve() << "\n"; return 0; }