結果
問題 | No.1177 余りは? |
ユーザー |
![]() |
提出日時 | 2020-12-09 22:48:26 |
言語 | Go (1.23.4) |
結果 |
AC
|
実行時間 | 2 ms / 1,000 ms |
コード長 | 4,535 bytes |
コンパイル時間 | 12,436 ms |
コンパイル使用メモリ | 237,120 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-19 05:20:56 |
合計ジャッジ時間 | 12,067 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 32 |
ソースコード
package mainimport ("bufio""fmt""os""sort""strconv")var sc = bufio.NewScanner(os.Stdin)var wr = bufio.NewWriter(os.Stdout)func out(x ...interface{}) {fmt.Fprintln(wr, x...)}func getI() int {sc.Scan()i, e := strconv.Atoi(sc.Text())if e != nil {panic(e)}return i}func getF() float64 {sc.Scan()i, e := strconv.ParseFloat(sc.Text(), 64)if e != nil {panic(e)}return i}func getInts(N int) []int {ret := make([]int, N)for i := 0; i < N; i++ {ret[i] = getI()}return ret}func getS() string {sc.Scan()return sc.Text()}// min, max, asub, absなど基本関数func max(a, b int) int {if a > b {return a}return b}func min(a, b int) int {if a < b {return a}return b}func asub(a, b int) int {if a > b {return a - b}return b - a}func abs(a int) int {if a >= 0 {return a}return -a}func lowerBound(a []int, x int) int {idx := sort.Search(len(a), func(i int) bool {return a[i] >= x})return idx}func upperBound(a []int, x int) int {idx := sort.Search(len(a), func(i int) bool {return a[i] > x})return idx}//----------------------------------------// modint//----------------------------------------type modint struct {mod intfracMemo []intifracMemo []int}func newModint(m int) *modint {var ret modintret.mod = mret.fracMemo = []int{1, 1}ret.ifracMemo = []int{1, 1}return &ret}func (m *modint) add(a, b int) int {ret := (a + b) % m.modif ret < 0 {ret += m.mod}return ret}func (m *modint) sub(a, b int) int {ret := (a - b) % m.modif ret < 0 {ret += m.mod}return ret}func (m *modint) mul(a, b int) int {ret := a * b % m.modif ret < 0 {ret += m.mod}return ret}func (m *modint) div(a, b int) int {ret := a * m.modinv(b)ret %= m.modreturn ret}func (m *modint) pow(p, n int) int {ret := 1x := pfor n != 0 {if n%2 == 1 {ret *= xret %= m.mod}n /= 2x = x * x % m.mod}return ret}// 逆元を使った割り算(MOD)// mod. m での a の逆元 a^{-1} を計算するfunc (m *modint) modinv(a int) int {b := m.modu := 1v := 0for b != 0 {t := a / ba -= t * ba, b = b, au -= t * vu, v = v, u}u %= m.modif u < 0 {u += m.mod}return u}//-----------------------------------------------// 行列累乗// A[][]のp乗を求める//-----------------------------------------------func (m *modint) powModMatrix(A [][]int, p int) [][]int {N := len(A)ret := make([][]int, N)for i := 0; i < N; i++ {ret[i] = make([]int, N)ret[i][i] = 1}for p > 0 {if p&1 == 1 {ret = m.mulMod(ret, A)}A = m.mulMod(A, A)p >>= 1}return ret}func (m *modint) mulMod(A, B [][]int) [][]int {H := len(A)W := len(B[0])K := len(A[0])C := make([][]int, W)for i := 0; i < W; i++ {C[i] = make([]int, W)}for i := 0; i < H; i++ {for j := 0; j < W; j++ {for k := 0; k < K; k++ {C[i][j] += A[i][k] * B[k][j]C[i][j] %= m.mod}}}return C}//---------------------------------------------------// nCk 計算関連: TELすることがあるかも// ※pow(x, p-2)を何度も取るので// 厳しそうな場合は、ここを削除して高速なのを使う//---------------------------------------------------func (m *modint) mfrac(n int) int {if len(m.fracMemo) > n {return m.fracMemo[n]}if len(m.fracMemo) == 0 {m.fracMemo = append(m.fracMemo, 1)}for len(m.fracMemo) <= n {size := len(m.fracMemo)m.fracMemo = append(m.fracMemo, m.fracMemo[size-1]*size%m.mod)}return m.fracMemo[n]}func (m *modint) mifrac(n int) int {if len(m.ifracMemo) > n {return m.ifracMemo[n]}if len(m.ifracMemo) == 0 {m.fracMemo = append(m.ifracMemo, 1)}for len(m.ifracMemo) <= n {size := len(m.ifracMemo)m.ifracMemo = append(m.ifracMemo, m.ifracMemo[size-1]*m.pow(size, m.mod-2)%m.mod)}return m.ifracMemo[n]}func (m *modint) nCr(n, r int) int {if n == r {return 1}if n < r || r < 0 {return 0}ret := 1ret *= m.mfrac(n)ret %= m.modret *= m.mifrac(r)ret %= m.modret *= m.mifrac(n - r)ret %= m.modreturn (ret)}func main() {defer wr.Flush()sc.Split(bufio.ScanWords)sc.Buffer([]byte{}, 1000000)// this template is new version.// use getI(), getS(), getInts(), getF()p, k := getI(), getI()m := newModint(1e9 + 7)ans := m.sub(m.pow(10, p-1), 1)ans = m.div(ans, p)if k == 0 {ans = m.add(ans, 1)}out(ans)}