結果
問題 | No.1321 塗るめた |
ユーザー | polylogK |
提出日時 | 2020-12-10 18:53:49 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 4,258 bytes |
コンパイル時間 | 698 ms |
コンパイル使用メモリ | 79,336 KB |
実行使用メモリ | 71,964 KB |
最終ジャッジ日時 | 2024-09-19 21:12:39 |
合計ジャッジ時間 | 4,291 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
13,752 KB |
testcase_01 | TLE | - |
testcase_02 | -- | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
testcase_42 | -- | - |
testcase_43 | -- | - |
testcase_44 | -- | - |
testcase_45 | -- | - |
testcase_46 | -- | - |
ソースコード
#line 1 "main.cpp" #include <stdio.h> #include <vector> template<typename T> std::vector<T> make_v(size_t a){return std::vector<T>(a);} template<typename T,typename... Ts> auto make_v(size_t a,Ts... ts){ return std::vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...)); } #line 1 "/home/ecasdqina/cpcpp/libs/library_cpp/math/modint.hpp" #include <iostream> namespace cplib { template <std::uint_fast64_t Modulus> class modint { using u32 = std::uint_fast32_t; using u64 = std::uint_fast64_t; using i32 = std::int_fast32_t; using i64 = std::int_fast64_t; inline u64 apply(i64 x) { return (x < 0 ? x + Modulus : x); }; public: u64 a; static constexpr u64 mod = Modulus; constexpr modint(const i64& x = 0) noexcept: a(apply(x % (i64)Modulus)) {} constexpr modint operator+(const modint& rhs) const noexcept { return modint(*this) += rhs; } constexpr modint operator-(const modint& rhs) const noexcept { return modint(*this) -= rhs; } constexpr modint operator*(const modint& rhs) const noexcept { return modint(*this) *= rhs; } constexpr modint operator/(const modint& rhs) const noexcept { return modint(*this) /= rhs; } constexpr modint operator^(const u64& k) const noexcept { return modint(*this) ^= k; } constexpr modint operator^(const modint& k) const noexcept { return modint(*this) ^= k.value(); } constexpr modint operator-() const noexcept { return modint(Modulus - a); } constexpr modint operator++() noexcept { return (*this) = modint(*this) + 1; } constexpr modint operator--() noexcept { return (*this) = modint(*this) - 1; } const bool operator==(const modint& rhs) const noexcept { return a == rhs.a; }; const bool operator!=(const modint& rhs) const noexcept { return a != rhs.a; }; const bool operator<=(const modint& rhs) const noexcept { return a <= rhs.a; }; const bool operator>=(const modint& rhs) const noexcept { return a >= rhs.a; }; const bool operator<(const modint& rhs) const noexcept { return a < rhs.a; }; const bool operator>(const modint& rhs) const noexcept { return a > rhs.a; }; constexpr modint& operator+=(const modint& rhs) noexcept { a += rhs.a; if (a >= Modulus) a -= Modulus; return *this; } constexpr modint& operator-=(const modint& rhs) noexcept { if (a < rhs.a) a += Modulus; a -= rhs.a; return *this; } constexpr modint& operator*=(const modint& rhs) noexcept { a = a * rhs.a % Modulus; return *this; } constexpr modint& operator/=(modint rhs) noexcept { u64 exp = Modulus - 2; while (exp) { if (exp % 2) (*this) *= rhs; rhs *= rhs; exp /= 2; } return *this; } constexpr modint& operator^=(u64 k) noexcept { auto b = modint(1); while(k) { if(k & 1) b = b * (*this); (*this) *= (*this); k >>= 1; } return (*this) = b; } constexpr modint& operator=(const modint& rhs) noexcept { a = rhs.a; return (*this); } const modint inverse() const { return modint(1) / *this; } const modint power(i64 k) const { if(k < 0) return modint(*this).inverse() ^ (-k); return modint(*this) ^ k; } explicit operator bool() const { return a; } explicit operator u64() const { return a; } constexpr u64& value() noexcept { return a; } constexpr const u64& value() const noexcept { return a; } friend std::ostream& operator<<(std::ostream& os, const modint& p) { return os << p.a; } friend std::istream& operator>>(std::istream& is, modint& p) { u64 t; is >> t; p = modint(t); return is; } }; } #line 13 "main.cpp" using mint = cplib::modint<998244353>; int main() { int n, m, K; scanf("%d%d%d", &n, &m, &K); std::vector<mint> fact(n + 1, 1); for(int i = 0; i < n; i++) fact[i + 1] = fact[i] * (i + 1); auto comb = make_v<mint>(n + 1, n + 1); for(int i = 0; i <= n; i++) for(int j = 0; j <= i; j++) comb[i][j] = fact[i] / fact[j] / fact[i - j]; auto dp = make_v<mint>(n + 1, K + 2); dp[0][0] = 1; for(int i = 0; i < m; i++) { auto nxt = make_v<mint>(n + 1, K + 2); for(int i = 0; i <= n; i++) { for(int j = 0; j <= K; j++) { for(int k = 0; i + k <= n; k++) { nxt[i + k][j + !!k] += comb[n - i][k] * (mint(2).power(k) - 1) * dp[i][j]; nxt[i + k][j] += comb[n - i][k] * 1 * dp[i][j]; } } } dp.swap(nxt); } printf("%lld\n", dp[n][K].value()); return 0; }