結果

問題 No.1321 塗るめた
ユーザー polylogKpolylogK
提出日時 2020-12-10 18:53:49
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 4,258 bytes
コンパイル時間 698 ms
コンパイル使用メモリ 79,336 KB
実行使用メモリ 71,964 KB
最終ジャッジ日時 2024-09-19 21:12:39
合計ジャッジ時間 4,291 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
13,752 KB
testcase_01 TLE -
testcase_02 -- -
testcase_03 -- -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
testcase_41 -- -
testcase_42 -- -
testcase_43 -- -
testcase_44 -- -
testcase_45 -- -
testcase_46 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"
#include <stdio.h>
#include <vector>

template<typename T>
std::vector<T> make_v(size_t a){return std::vector<T>(a);}

template<typename T,typename... Ts>
auto make_v(size_t a,Ts... ts){
  return std::vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));
}

#line 1 "/home/ecasdqina/cpcpp/libs/library_cpp/math/modint.hpp"



#include <iostream>

namespace cplib {
template <std::uint_fast64_t Modulus>
class modint {
	using u32 = std::uint_fast32_t;
	using u64 = std::uint_fast64_t;
	using i32 = std::int_fast32_t;
	using i64 = std::int_fast64_t;

	inline u64 apply(i64 x) { return (x < 0 ? x + Modulus : x); };

public:
	u64 a;
	static constexpr u64 mod = Modulus;

	constexpr modint(const i64& x = 0) noexcept: a(apply(x % (i64)Modulus)) {}

	constexpr modint operator+(const modint& rhs) const noexcept { return modint(*this) += rhs; }
	constexpr modint operator-(const modint& rhs) const noexcept { return modint(*this) -= rhs; }
	constexpr modint operator*(const modint& rhs) const noexcept { return modint(*this) *= rhs; }
	constexpr modint operator/(const modint& rhs) const noexcept { return modint(*this) /= rhs; }
	constexpr modint operator^(const u64& k) const noexcept { return modint(*this) ^= k; }
	constexpr modint operator^(const modint& k) const noexcept { return modint(*this) ^= k.value(); }
	constexpr modint operator-() const noexcept { return modint(Modulus - a); }
	constexpr modint operator++() noexcept { return (*this) = modint(*this) + 1; }
	constexpr modint operator--() noexcept { return (*this) = modint(*this) - 1; }
	const bool operator==(const modint& rhs) const noexcept { return a == rhs.a; };
	const bool operator!=(const modint& rhs) const noexcept { return a != rhs.a; };
	const bool operator<=(const modint& rhs) const noexcept { return a <= rhs.a; };
	const bool operator>=(const modint& rhs) const noexcept { return a >= rhs.a; };
	const bool operator<(const modint& rhs) const noexcept { return a < rhs.a; };
	const bool operator>(const modint& rhs) const noexcept { return a > rhs.a; };
	constexpr modint& operator+=(const modint& rhs) noexcept {
		a += rhs.a;
		if (a >= Modulus) a -= Modulus;
		return *this;
	}
	constexpr modint& operator-=(const modint& rhs) noexcept {
		if (a < rhs.a) a += Modulus;
		a -= rhs.a;
		return *this;
	}
	constexpr modint& operator*=(const modint& rhs) noexcept {
		a = a * rhs.a % Modulus;
		return *this;
	}
	constexpr modint& operator/=(modint rhs) noexcept {
		u64 exp = Modulus - 2;
		while (exp) {
			if (exp % 2) (*this) *= rhs;

			rhs *= rhs;
			exp /= 2;
		}
		return *this;
	}
	constexpr modint& operator^=(u64 k) noexcept {
		auto b = modint(1);
		while(k) {
			if(k & 1) b = b * (*this);
			(*this) *= (*this);
			k >>= 1;
		}
		return (*this) = b;
	}
	constexpr modint& operator=(const modint& rhs) noexcept {
		a = rhs.a;
		return (*this);
	}

	const modint inverse() const {
		return modint(1) / *this;
	}
	const modint power(i64 k) const {
		if(k < 0) return modint(*this).inverse() ^ (-k);
		return modint(*this) ^ k;
	}

	explicit operator bool() const { return a; }
	explicit operator u64() const { return a; }
	constexpr u64& value() noexcept { return a; }
	constexpr const u64& value() const noexcept { return a; }

	friend std::ostream& operator<<(std::ostream& os, const modint& p) {
		return os << p.a;
	}
	friend std::istream& operator>>(std::istream& is, modint& p) {
		u64 t;
		is >> t;
		p = modint(t);
		return is;
	}
};
}


#line 13 "main.cpp"
using mint = cplib::modint<998244353>;

int main() {
	int n, m, K; scanf("%d%d%d", &n, &m, &K);

	std::vector<mint> fact(n + 1, 1);
	for(int i = 0; i < n; i++) fact[i + 1] = fact[i] * (i + 1);

	auto comb = make_v<mint>(n + 1, n + 1);
	for(int i = 0; i <= n; i++) for(int j = 0; j <= i; j++) comb[i][j] = fact[i] / fact[j] / fact[i - j];

	auto dp = make_v<mint>(n + 1, K + 2); dp[0][0] = 1;
	for(int i = 0; i < m; i++) {
		auto nxt = make_v<mint>(n + 1, K + 2);

		for(int i = 0; i <= n; i++) {
			for(int j = 0; j <= K; j++) {
				for(int k = 0; i + k <= n; k++) {
					nxt[i + k][j + !!k] += comb[n - i][k] * (mint(2).power(k) - 1) * dp[i][j];
					nxt[i + k][j] += comb[n - i][k] * 1 * dp[i][j];
				}
			}
		}
		dp.swap(nxt);
	}
	printf("%lld\n", dp[n][K].value());
	return 0;
}
0