結果

問題 No.1316 Maximum Minimum Spanning Tree
ユーザー hitonanodehitonanode
提出日時 2020-12-12 01:11:42
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 134 ms / 2,000 ms
コード長 5,350 bytes
コンパイル時間 8,317 ms
コンパイル使用メモリ 337,080 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-19 22:05:30
合計ジャッジ時間 15,060 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 3 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 80 ms
5,376 KB
testcase_08 AC 92 ms
5,376 KB
testcase_09 AC 126 ms
5,376 KB
testcase_10 AC 117 ms
5,376 KB
testcase_11 AC 16 ms
5,376 KB
testcase_12 AC 11 ms
5,376 KB
testcase_13 AC 11 ms
5,376 KB
testcase_14 AC 12 ms
5,376 KB
testcase_15 AC 114 ms
5,376 KB
testcase_16 AC 124 ms
5,376 KB
testcase_17 AC 120 ms
5,376 KB
testcase_18 AC 129 ms
5,376 KB
testcase_19 AC 6 ms
5,376 KB
testcase_20 AC 6 ms
5,376 KB
testcase_21 AC 5 ms
5,376 KB
testcase_22 AC 5 ms
5,376 KB
testcase_23 AC 6 ms
5,376 KB
testcase_24 AC 6 ms
5,376 KB
testcase_25 AC 6 ms
5,376 KB
testcase_26 AC 6 ms
5,376 KB
testcase_27 AC 5 ms
5,376 KB
testcase_28 AC 5 ms
5,376 KB
testcase_29 AC 4 ms
5,376 KB
testcase_30 AC 5 ms
5,376 KB
testcase_31 AC 6 ms
5,376 KB
testcase_32 AC 7 ms
5,376 KB
testcase_33 AC 6 ms
5,376 KB
testcase_34 AC 7 ms
5,376 KB
testcase_35 AC 6 ms
5,376 KB
testcase_36 AC 5 ms
5,376 KB
testcase_37 AC 5 ms
5,376 KB
testcase_38 AC 5 ms
5,376 KB
testcase_39 AC 7 ms
5,376 KB
testcase_40 AC 7 ms
5,376 KB
testcase_41 AC 7 ms
5,376 KB
testcase_42 AC 6 ms
5,376 KB
testcase_43 AC 59 ms
5,376 KB
testcase_44 AC 59 ms
5,376 KB
testcase_45 AC 97 ms
5,376 KB
testcase_46 AC 96 ms
5,376 KB
testcase_47 AC 64 ms
5,376 KB
testcase_48 AC 67 ms
5,376 KB
testcase_49 AC 45 ms
5,376 KB
testcase_50 AC 49 ms
5,376 KB
testcase_51 AC 66 ms
5,376 KB
testcase_52 AC 65 ms
5,376 KB
testcase_53 AC 107 ms
5,376 KB
testcase_54 AC 114 ms
5,376 KB
testcase_55 AC 117 ms
5,376 KB
testcase_56 AC 108 ms
5,376 KB
testcase_57 AC 112 ms
5,376 KB
testcase_58 AC 109 ms
5,376 KB
testcase_59 AC 110 ms
5,376 KB
testcase_60 AC 114 ms
5,376 KB
testcase_61 AC 106 ms
5,376 KB
testcase_62 AC 118 ms
5,376 KB
testcase_63 AC 103 ms
5,376 KB
testcase_64 AC 118 ms
5,376 KB
testcase_65 AC 126 ms
5,376 KB
testcase_66 AC 126 ms
5,376 KB
testcase_67 AC 126 ms
5,376 KB
testcase_68 AC 122 ms
5,376 KB
testcase_69 AC 124 ms
5,376 KB
testcase_70 AC 122 ms
5,376 KB
testcase_71 AC 115 ms
5,376 KB
testcase_72 AC 121 ms
5,376 KB
testcase_73 AC 134 ms
5,376 KB
testcase_74 AC 133 ms
5,376 KB
testcase_75 AC 8 ms
5,376 KB
testcase_76 AC 8 ms
5,376 KB
testcase_77 AC 8 ms
5,376 KB
testcase_78 AC 109 ms
5,376 KB
testcase_79 AC 115 ms
5,376 KB
testcase_80 AC 109 ms
5,376 KB
testcase_81 AC 54 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <cmath>
#include <functional>
#include <iostream>
#include <numeric>
#include <queue>
#include <utility>
#include <vector>


// MaxFlow (Dinic algorithm)
template <typename T> struct MaxFlow {
    struct edge {
        int to;
        T cap;
        int rev;
    };
    std::vector<std::vector<edge>> edges;
    std::vector<int> level; // level[i] = distance between vertex S and i (Default: -1)
    std::vector<int> iter;  // iteration counter, used for Dinic's DFS

    void bfs(int s) {
        level.assign(edges.size(), -1);
        std::queue<int> q;
        level[s] = 0;
        q.push(s);
        while (!q.empty()) {
            int v = q.front();
            q.pop();
            for (edge &e : edges[v]) {
                if (e.cap > 0 and level[e.to] < 0) {
                    level[e.to] = level[v] + 1;
                    q.push(e.to);
                }
            }
        }
    }

    T dfs_dinic(int v, int goal, T f) {
        if (v == goal) return f;
        for (int &i = iter[v]; i < (int)edges[v].size(); i++) {
            edge &e = edges[v][i];
            if (e.cap > 0 and level[v] < level[e.to]) {
                T d = dfs_dinic(e.to, goal, std::min(f, e.cap));
                if (d > 0) {
                    e.cap -= d;
                    edges[e.to][e.rev].cap += d;
                    return d;
                }
            }
        }
        return 0;
    }

    MaxFlow(int N) { edges.resize(N); }
    void add_edge(int from, int to, T capacity) {
        edges[from].push_back(edge{to, capacity, (int)edges[to].size()});
        edges[to].push_back(edge{from, (T)0, (int)edges[from].size() - 1});
    }
    // Dinic algorithm
    // Complexity: O(V^2 E)
    T Dinic(int s, int t, T req) {
        T flow = 0;
        while (req > 0) {
            bfs(s);
            if (level[t] < 0) break;
            iter.assign(edges.size(), 0);
            T f;
            while ((f = dfs_dinic(s, t, req)) > 0) flow += f, req -= f;
        }
        return flow;
    }
};


// LinearProgrammingOnBasePolyhedron : Maximize/minimize linear function on base polyhedron, using Edmonds' algorithm
//
// maximize/minimize cx s.t. (x on some base polyhedron)
// Reference: <https://www.amazon.co.jp/dp/B01N6G0579>, Sec. 2.4, Algorithm 2.2-2.3
//            "Submodular Functions, Matroids, and Certain Polyhedra" [Edmonds+, 1970]
template <typename Tvalue> struct LinearProgrammingOnBasePolyhedron {
    using Tfunc = std::function<Tvalue(int, const std::vector<Tvalue> &)>;
    static Tvalue EPS;
    int N;
    std::vector<Tvalue> c;
    Tfunc maximize_xi;
    Tvalue xsum;
    bool minimize;

    Tvalue fun;
    std::vector<Tvalue> x;
    bool infeasible;

    void _init(const std::vector<Tvalue> &c_, Tfunc q_, Tvalue xsum_, Tvalue xlowerlimit, bool minimize_) {
        N = c_.size();
        c = c_;
        maximize_xi = q_;
        xsum = xsum_;
        minimize = minimize_;
        fun = 0;
        x.assign(N, xlowerlimit);
        infeasible = false;
    }

    void _solve() {
        std::vector<std::pair<Tvalue, int>> c2i(N);
        for (int i = 0; i < N; i++) c2i[i] = std::make_pair(c[i], i);

        std::sort(c2i.begin(), c2i.end());
        if (!minimize) std::reverse(c2i.begin(), c2i.end());
        for (const auto &p : c2i) {
            const int i = p.second;
            x[i] = maximize_xi(i, x);
        }
        Tvalue error = std::accumulate(x.begin(), x.end(), Tvalue(0)) - xsum;
        if (error > EPS or -error > EPS) {
            infeasible = true;
        } else {
            for (int i = 0; i < N; i++) fun += x[i] * c[i];
        }
    }

    LinearProgrammingOnBasePolyhedron(const std::vector<Tvalue> &c_, Tfunc q_, Tvalue xsum_, Tvalue xlowerlimit, bool minimize_) {
        _init(c_, q_, xsum_, xlowerlimit, minimize_);
        _solve();
    }
};
template <> long long LinearProgrammingOnBasePolyhedron<long long>::EPS = 0;
template <> long double LinearProgrammingOnBasePolyhedron<long double>::EPS = 1e-10;

#include <boost/multiprecision/cpp_dec_float.hpp>
using Float = boost::multiprecision::cpp_dec_float_100;
template <> Float LinearProgrammingOnBasePolyhedron<Float>::EPS = 1e-10;


using std::cin, std::cout, std::vector;

int main() {
    using Num = Float;
    int N, M;
    Num K;
    cin >> N >> M >> K;
    vector<int> A(M), B(M);
    vector<Num> C(M), D(M);
    for (int i = 0; i < M; i++) {
        cin >> A[i] >> B[i] >> C[i] >> D[i];
        A[i]--, B[i]--, C[i] *= K;
    }

    auto maximize_xi = [&](int ie, const vector<Num> &xnow) -> Num {
        MaxFlow<Num> mf(N + 2);
        mf.add_edge(N, A[ie], 2 * N);
        mf.add_edge(N, B[ie], 2 * N);
        for (int je = 0; je < M; je++) {
            mf.add_edge(A[je], B[je], xnow[je]);
            mf.add_edge(B[je], A[je], xnow[je]);
            mf.add_edge(N, A[je], xnow[je]);
            mf.add_edge(N, B[je], xnow[je]);
        }
        for (int iv = 0; iv < N; iv++) mf.add_edge(iv, N + 1, 2);
        Num ret = mf.Dinic(N, N + 1, 1LL << 62) / 2 - 1 - std::accumulate(xnow.begin(), xnow.end(), (Num)0);
        return std::min<Num>(ret, D[ie] / K);
    };

    LinearProgrammingOnBasePolyhedron<Num> solver(C, maximize_xi, N - 1, 0, true);
    if (solver.infeasible) {
        cout << "-1\n";
    } else {
        cout << llround(solver.fun) << '\n';
    }
}
0