結果

問題 No.1316 Maximum Minimum Spanning Tree
ユーザー hitonanode
提出日時 2020-12-12 22:09:40
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 367 ms / 2,000 ms
コード長 2,267 bytes
コンパイル時間 230 ms
コンパイル使用メモリ 82,304 KB
実行使用メモリ 80,240 KB
最終ジャッジ日時 2024-09-19 22:30:31
合計ジャッジ時間 18,684 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 78
権限があれば一括ダウンロードができます

ソースコード

diff #

# Python, assuming AC
from collections import deque

class MaxFlow:
    def __init__(self, N: int) -> None:
        self.N = N
        self.edges = [[] for _ in range(N)]

    def add_edge(self, s: int, t: int, cap: int) -> None:
        e = [t, cap, None]
        e[2] = erev = [s, 0, e]
        self.edges[s].append(e)
        self.edges[t].append(erev)

    def bfs(self, s: int, t: int) -> bool:
        self.level = [-1] * self.N
        self.level[s] = 0
        q = deque([s])
        while q:
            v = q.popleft()
            lnxt = self.level[v] + 1
            for to, cap, _ in self.edges[v]:
                if cap and self.level[to] < 0:
                    self.level[to] = lnxt
                    q.append(to)
        return self.level[t] >= 0

    def dfs_dinic(self, v: int, goal: int, f: int) -> int:
        if v == goal:
            return f
        
        for e in self.it[v]:
            to, cap, rev = e
            if cap and self.level[v] < self.level[to]:
                d = self.dfs_dinic(to, goal, min(f, cap))
                if d:
                    e[1] -= d
                    rev[1] += d
                    return d
        return 0

    def Dinic(self, s: int, t: int, req: int) -> int:
        flow = 0
        while self.bfs(s, t) and req:
            *self.it, = map(iter, self.edges)
            while req:
                f = self.dfs_dinic(s, t, req)
                if f == 0:
                    break
                flow += f
                req -= f
        return flow


N, M, K = map(int, input().split())

A = [-1] * M
B = [-1] * M
C = [-1] * M
D = [-1] * M

c2eid = []
for eid in range(M):
    A[eid], B[eid], C[eid], D[eid] = map(int, input().split())
    c2eid.append((C[eid], eid))

X = [0] * M

for ci, i in sorted(c2eid):
    mf = MaxFlow(N + 2)
    mf.add_edge(0, A[i], K * N)
    mf.add_edge(0, B[i], K * N)
    for a, b, x in zip(A, B, X):
        mf.add_edge(0, a, x)
        mf.add_edge(a, b, x)
    for j in range(N):
        mf.add_edge(j + 1, N + 1, K)
    X[i] = min(D[i], mf.Dinic(0, N + 1, 1 << 60) - K - sum(X))

if sum(X) < K * (N - 1):
    print(-1)
else:
    print(sum([c * x for c, x in zip(C, X)]))
0