結果

問題 No.631 Noelちゃんと電車旅行
ユーザー 👑 emthrmemthrm
提出日時 2020-12-13 16:37:50
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 100 ms / 2,000 ms
コード長 8,718 bytes
コンパイル時間 2,226 ms
コンパイル使用メモリ 207,896 KB
実行使用メモリ 7,168 KB
最終ジャッジ日時 2024-10-02 09:49:07
合計ジャッジ時間 5,105 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 66 ms
5,248 KB
testcase_01 AC 99 ms
6,912 KB
testcase_02 AC 100 ms
7,040 KB
testcase_03 AC 99 ms
7,040 KB
testcase_04 AC 99 ms
7,168 KB
testcase_05 AC 100 ms
7,168 KB
testcase_06 AC 39 ms
5,376 KB
testcase_07 AC 23 ms
5,376 KB
testcase_08 AC 74 ms
6,820 KB
testcase_09 AC 85 ms
5,376 KB
testcase_10 AC 61 ms
6,912 KB
testcase_11 AC 54 ms
5,376 KB
testcase_12 AC 68 ms
6,912 KB
testcase_13 AC 63 ms
5,376 KB
testcase_14 AC 28 ms
5,376 KB
testcase_15 AC 53 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 2 ms
5,376 KB
testcase_19 AC 2 ms
5,376 KB
testcase_20 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <typename T>
struct LazySegmentTree {
  using Monoid = typename T::Monoid;
  using OperatorMonoid = typename T::OperatorMonoid;

  LazySegmentTree(int n) : LazySegmentTree(std::vector<Monoid>(n, T::m_unity())) {}

  LazySegmentTree(const std::vector<Monoid> &a) : n(a.size()) {
    while ((1 << height) < n) ++height;
    p2 = 1 << height;
    lazy.assign(p2, T::o_unity());
    dat.assign(p2 << 1, T::m_unity());
    for (int i = 0; i < n; ++i) dat[i + p2] = a[i];
    for (int i = p2 - 1; i > 0; --i) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]);
  }

  void set(int idx, const Monoid val) {
    idx += p2;
    for (int i = height; i > 0; --i) propagate(idx >> i);
    dat[idx] = val;
    for (int i = 1; i <= height; ++i) {
      int current_idx = idx >> i;
      dat[current_idx] = T::m_merge(dat[current_idx << 1], dat[(current_idx << 1) + 1]);
    }
  }

  void apply(int idx, const OperatorMonoid val) {
    idx += p2;
    for (int i = height; i > 0; --i) propagate(idx >> i);
    dat[idx] = T::apply(dat[idx], val);
    for (int i = 1; i <= height; ++i) {
      int current_idx = idx >> i;
      dat[current_idx] = T::m_merge(dat[current_idx << 1], dat[(current_idx << 1) + 1]);
    }
  }

  void apply(int left, int right, const OperatorMonoid val) {
    if (right <= left) return;
    left += p2;
    right += p2;
    int left_ctz = __builtin_ctz(left);
    for (int i = height; i > left_ctz; --i) propagate(left >> i);
    int right_ctz = __builtin_ctz(right);
    for (int i = height; i > right_ctz; --i) propagate(right >> i);
    for (int l = left, r = right; l < r; l >>= 1, r >>= 1) {
      if (l & 1) sub_apply(l++, val);
      if (r & 1) sub_apply(--r, val);
    }
    for (int i = left >> (left_ctz + 1); i > 0; i >>= 1) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]);
    for (int i = right >> (right_ctz + 1); i > 0; i >>= 1) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]);
  }

  Monoid get(int left, int right) {
    if (right <= left) return T::m_unity();
    left += p2;
    right += p2;
    int left_ctz = __builtin_ctz(left);
    for (int i = height; i > left_ctz; --i) propagate(left >> i);
    int right_ctz = __builtin_ctz(right);
    for (int i = height; i > right_ctz; --i) propagate(right >> i);
    Monoid l_res = T::m_unity(), r_res = T::m_unity();
    for (; left < right; left >>= 1, right >>= 1) {
      if (left & 1) l_res = T::m_merge(l_res, dat[left++]);
      if (right & 1) r_res = T::m_merge(dat[--right], r_res);
    }
    return T::m_merge(l_res, r_res);
  }

  Monoid operator[](const int idx) {
    int node = idx + p2;
    for (int i = height; i > 0; --i) propagate(node >> i);
    return dat[node];
  }

  template <typename G>
  int find_right(int left, G g) {
    if (left >= n) return n;
    left += p2;
    for (int i = height; i > 0; --i) propagate(left >> i);
    Monoid val = T::m_unity();
    do {
      while (!(left & 1)) left >>= 1;
      Monoid nx = T::m_merge(val, dat[left]);
      if (!g(nx)) {
        while (left < p2) {
          propagate(left);
          left <<= 1;
          nx = T::m_merge(val, dat[left]);
          if (g(nx)) {
            val = nx;
            ++left;
          }
        }
        return left - p2;
      }
      val = nx;
      ++left;
    } while (__builtin_popcount(left) > 1);
    return n;
  }

  template <typename G>
  int find_left(int right, G g) {
    if (right <= 0) return -1;
    right += p2;
    for (int i = height; i > 0; --i) propagate((right - 1) >> i);
    Monoid val = T::m_unity();
    do {
      --right;
      while (right > 1 && !(right & 1)) right >>= 1;
      Monoid nx = T::m_merge(dat[right], val);
      if (!g(nx)) {
        while (right < p2) {
          propagate(right);
          right = (right << 1) + 1;
          nx = T::m_merge(dat[right], val);
          if (g(nx)) {
            val = nx;
            --right;
          }
        }
        return right - p2;
      }
      val = nx;
    } while (__builtin_popcount(right) > 1);
    return -1;
  }

private:
  int n, p2, height = 0;
  std::vector<Monoid> dat;
  std::vector<OperatorMonoid> lazy;

  void sub_apply(int idx, const OperatorMonoid &val) {
    dat[idx] = T::apply(dat[idx], val);
    if (idx < p2) lazy[idx] = T::o_merge(lazy[idx], val);
  }

  void propagate(int idx) {
    // assert(1 <= idx && idx < p2);
    sub_apply(idx << 1, lazy[idx]);
    sub_apply((idx << 1) + 1, lazy[idx]);
    lazy[idx] = T::o_unity();
  }
};

namespace monoid {
template <typename T>
struct RangeMinimumAndUpdateQuery {
  using Monoid = T;
  using OperatorMonoid = T;
  static constexpr T m_unity() { return std::numeric_limits<T>::max(); }
  static constexpr T o_unity() { return std::numeric_limits<T>::max(); }
  static T m_merge(const T &a, const T &b) { return std::min(a, b); }
  static T o_merge(const T &a, const T &b) { return b == o_unity() ? a : b; }
  static T apply(const T &a, const T &b) { return b == o_unity()? a : b; }
};

template <typename T>
struct RangeMaximumAndUpdateQuery {
  using Monoid = T;
  using OperatorMonoid = T;
  static constexpr T m_unity() { return std::numeric_limits<T>::min(); }
  static constexpr T o_unity() { return std::numeric_limits<T>::min(); }
  static T m_merge(const T &a, const T &b) { return std::max(a, b); }
  static T o_merge(const T &a, const T &b) { return b == o_unity() ? a : b; }
  static T apply(const T &a, const T &b) { return b == o_unity()? a : b; }
};

template <typename T, T TINF>
struct RangeMinimumAndAddQuery {
  using Monoid = T;
  using OperatorMonoid = T;
  static constexpr T m_unity() { return TINF; }
  static constexpr T o_unity() { return 0; }
  static T m_merge(const T &a, const T &b) { return std::min(a, b); }
  static T o_merge(const T &a, const T &b) { return a + b; }
  static T apply(const T &a, const T &b) { return a + b; }
};

template <typename T, T TINF>
struct RangeMaximumAndAddQuery {
  using Monoid = T;
  using OperatorMonoid = T;
  static constexpr T m_unity() { return -TINF; }
  static constexpr T o_unity() { return 0; }
  static T m_merge(const T &a, const T &b) { return std::max(a, b); }
  static T o_merge(const T &a, const T &b) { return a + b; }
  static T apply(const T &a, const T &b) { return a + b; }
};

template <typename T>
struct RangeSumAndUpdateQuery {
  struct Node {
    T sum;
    int len;
  };
  static std::vector<Node> init(int n) { return std::vector<Node>(n, Node{0, 1}); }
  using Monoid = Node;
  using OperatorMonoid = T;
  static constexpr Node m_unity() { return {0, 0}; }
  static constexpr T o_unity() { return std::numeric_limits<T>::max(); }
  static Node m_merge(const Node &a, const Node &b) { return Node{a.sum + b.sum, a.len + b.len}; }
  static T o_merge(const T &a, const T &b) { return b == o_unity() ? a : b; }
  static Node apply(const Node &a, const T &b) { return Node{b == o_unity() ? a.sum : b * a.len, a.len}; }
};

template <typename T>
struct RangeSumAndAddQuery {
  struct Node {
    T sum;
    int len;
  };
  static std::vector<Node> init(int n) { return std::vector<Node>(n, Node{0, 1}); }
  using Monoid = Node;
  using OperatorMonoid = T;
  static constexpr Node m_unity() { return {0, 0}; }
  static constexpr T o_unity() { return 0; }
  static Node m_merge(const Node &a, const Node &b) { return Node{a.sum + b.sum, a.len + b.len}; }
  static T o_merge(const T &a, const T &b) { return a + b; }
  static Node apply(const Node &a, const T &b) { return Node{a.sum + b * a.len, a.len}; }
};
}  // monoid

int main() {
  int n; cin >> n;
  vector<ll> t(n - 1);
  REP(i, n - 1) {
    cin >> t[i];
    t[i] += (n - 1 - i) * 3;
  }
  LazySegmentTree<monoid::RangeMaximumAndAddQuery<ll, LINF>> seg(t);
  int m; cin >> m;
  while (m--) {
    int l, r, d; cin >> l >> r >> d; --l; --r;
    seg.apply(l, r + 1, d);
    cout << seg.get(0, n - 1) << '\n';
  }
  return 0;
}
0