結果
問題 | No.1504 ヌメロニム |
ユーザー | やむなく |
提出日時 | 2020-12-13 17:45:06 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 279 ms / 2,000 ms |
コード長 | 27,710 bytes |
コンパイル時間 | 3,370 ms |
コンパイル使用メモリ | 235,724 KB |
実行使用メモリ | 37,748 KB |
最終ジャッジ日時 | 2024-09-20 06:11:17 |
合計ジャッジ時間 | 10,284 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,940 KB |
testcase_14 | AC | 2 ms
6,944 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 2 ms
6,940 KB |
testcase_17 | AC | 2 ms
6,944 KB |
testcase_18 | AC | 2 ms
6,940 KB |
testcase_19 | AC | 1 ms
6,944 KB |
testcase_20 | AC | 4 ms
6,940 KB |
testcase_21 | AC | 3 ms
6,944 KB |
testcase_22 | AC | 3 ms
6,944 KB |
testcase_23 | AC | 1 ms
6,940 KB |
testcase_24 | AC | 271 ms
35,088 KB |
testcase_25 | AC | 154 ms
25,536 KB |
testcase_26 | AC | 278 ms
37,404 KB |
testcase_27 | AC | 163 ms
29,204 KB |
testcase_28 | AC | 166 ms
29,356 KB |
testcase_29 | AC | 275 ms
36,780 KB |
testcase_30 | AC | 273 ms
36,692 KB |
testcase_31 | AC | 159 ms
26,908 KB |
testcase_32 | AC | 164 ms
28,796 KB |
testcase_33 | AC | 274 ms
36,160 KB |
testcase_34 | AC | 40 ms
9,356 KB |
testcase_35 | AC | 33 ms
7,048 KB |
testcase_36 | AC | 134 ms
17,368 KB |
testcase_37 | AC | 18 ms
6,940 KB |
testcase_38 | AC | 277 ms
37,628 KB |
testcase_39 | AC | 276 ms
37,748 KB |
testcase_40 | AC | 277 ms
37,512 KB |
testcase_41 | AC | 279 ms
37,452 KB |
testcase_42 | AC | 279 ms
37,440 KB |
testcase_43 | AC | 276 ms
37,588 KB |
testcase_44 | AC | 277 ms
37,580 KB |
testcase_45 | AC | 277 ms
37,484 KB |
testcase_46 | AC | 277 ms
37,488 KB |
testcase_47 | AC | 277 ms
37,548 KB |
testcase_48 | AC | 159 ms
27,180 KB |
testcase_49 | AC | 155 ms
25,520 KB |
testcase_50 | AC | 4 ms
6,940 KB |
testcase_51 | AC | 2 ms
6,944 KB |
testcase_52 | AC | 2 ms
6,940 KB |
testcase_53 | AC | 3 ms
6,944 KB |
testcase_54 | AC | 2 ms
6,940 KB |
testcase_55 | AC | 33 ms
6,944 KB |
testcase_56 | AC | 2 ms
6,944 KB |
testcase_57 | AC | 1 ms
6,940 KB |
testcase_58 | AC | 2 ms
6,944 KB |
testcase_59 | AC | 2 ms
6,944 KB |
testcase_60 | AC | 2 ms
6,944 KB |
ソースコード
// // AC solution (tester) // #include <bits/stdc++.h> using namespace std; #define rep(i, n) for(int i = 0; i < (n); i++) #define repl(i, l, r) for(int i = (l); i < (r); i++) #define per(i, n) for(int i = ((n)-1); i >= 0; i--) #define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--) #define all(x) (x).begin(),(x).end() #define MOD 998244353 #define IINF 1000000000 #define LINF 1000000000000000000 #define SP <<" "<< #define CYES cout<<"Yes"<<endl #define CNO cout<<"No"<<endl #define CFS cin.tie(0);ios::sync_with_stdio(false) #define CST(x) cout<<fixed<<setprecision(x) #ifdef _MSC_VER #include <intrin.h> #endif using ll = long long; using ld = long double; using vi = vector<int>; using mti = vector<vector<int>>; using vl = vector<ll>; using mtl = vector<vector<ll>>; using pi = pair<int, int>; using pl = pair<ll, ll>; template<typename T> using heap = priority_queue<T, vector<T>, function<bool(const T, const T)>>; namespace atcoder { namespace internal { #ifndef _MSC_VER template<class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template<class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template<class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template<class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template<class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template<class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template<class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template<class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template<class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template<class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m < 2^31` barrett(unsigned int m) : _m(m), im((unsigned long long) (-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long) (((unsigned __int128) (z) * im) >> 64); #endif unsigned int v = (unsigned int) (z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int) (m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template<int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long) (i) * i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template<int m> constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { struct modint_base { }; struct static_modint_base : modint_base { }; template<class T> using is_modint = std::is_base_of<modint_base, T>; template<class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template<int m, std::enable_if_t<(1 <= m)> * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template<class T, internal::is_signed_int_t<T> * = nullptr> static_modint(T v) { long long x = (long long) (v % (long long) (umod())); if (x < 0) x += umod(); _v = (unsigned int) (x); } template<class T, internal::is_unsigned_int_t<T> * = nullptr> static_modint(T v) { _v = (unsigned int) (v % umod()); } static_modint(bool v) { _v = ((unsigned int) (v) % umod()); } unsigned int val() const { return _v; } mint &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint &operator+=(const mint &rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint &operator-=(const mint &rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint &operator*=(const mint &rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int) (z % umod()); return *this; } mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template<int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int) (bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template<class T, internal::is_signed_int_t<T> * = nullptr> dynamic_modint(T v) { long long x = (long long) (v % (long long) (mod())); if (x < 0) x += mod(); _v = (unsigned int) (x); } template<class T, internal::is_unsigned_int_t<T> * = nullptr> dynamic_modint(T v) { _v = (unsigned int) (v % mod()); } dynamic_modint(bool v) { _v = ((unsigned int) (v) % mod()); } unsigned int val() const { return _v; } mint &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint &operator+=(const mint &rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint &operator-=(const mint &rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint &operator*=(const mint &rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template<int id> internal::barrett dynamic_modint<id>::bt = 998244353; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template<class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template<class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template<class> struct is_dynamic_modint : public std::false_type { }; template<int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type { }; template<class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int) (n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { template<class mint, internal::is_static_modint_t<mint> * = nullptr> void butterfly(std::vector<mint> &a) { static constexpr int g = internal::primitive_root<mint::mod()>; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i] if (first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i <= cnt2 - 2; i++) { sum_e[i] = es[i] * now; now *= ies[i]; } } for (int ph = 1; ph <= h; ph++) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint now = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * now; a[i + offset] = l + r; a[i + offset + p] = l - r; } now *= sum_e[bsf(~(unsigned int) (s))]; } } } template<class mint, internal::is_static_modint_t<mint> * = nullptr> void butterfly_inv(std::vector<mint> &a) { static constexpr int g = internal::primitive_root<mint::mod()>; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i] if (first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i <= cnt2 - 2; i++) { sum_ie[i] = ies[i] * now; now *= es[i]; } } for (int ph = h; ph >= 1; ph--) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint inow = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long) (mint::mod() + l.val() - r.val()) * inow.val(); } inow *= sum_ie[bsf(~(unsigned int) (s))]; } } } } // namespace internal template<class mint, internal::is_static_modint_t<mint> * = nullptr> std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) { if (n < m) { std::swap(n, m); std::swap(a, b); } std::vector<mint> ans(n + m - 1); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } return ans; } int z = 1 << internal::ceil_pow2(n + m - 1); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for (int i = 0; i < z; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(n + m - 1); mint iz = mint(z).inv(); for (int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } template<unsigned int mod = 998244353, class T, std::enable_if_t<internal::is_integral<T>::value> * = nullptr> std::vector<T> convolution(const std::vector<T> &a, const std::vector<T> &b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; using mint = static_modint<mod>; std::vector<mint> a2(n), b2(m); for (int i = 0; i < n; i++) { a2[i] = mint(a[i]); } for (int i = 0; i < m; i++) { b2[i] = mint(b[i]); } auto c2 = convolution(move(a2), move(b2)); std::vector<T> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { c[i] = c2[i].val(); } return c; } std::vector<long long> convolution_ll(const std::vector<long long> &a, const std::vector<long long> &b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; static constexpr unsigned long long MOD1 = 754974721; // 2^24 static constexpr unsigned long long MOD2 = 167772161; // 2^25 static constexpr unsigned long long MOD3 = 469762049; // 2^26 static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second; static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second; static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; auto c1 = convolution<MOD1>(a, b); auto c2 = convolution<MOD2>(a, b); auto c3 = convolution<MOD3>(a, b); std::vector<long long> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { unsigned long long x = 0; x += (c1[i] * i1) % MOD1 * M2M3; x += (c2[i] * i2) % MOD2 * M1M3; x += (c3[i] * i3) % MOD3 * M1M2; // B = 2^63, -B <= x, r(real value) < B // (x, x - M, x - 2M, or x - 3M) = r (mod 2B) // r = c1[i] (mod MOD1) // focus on MOD1 // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B) // r = x, // x - M' + (0 or 2B), // x - 2M' + (0, 2B or 4B), // x - 3M' + (0, 2B, 4B or 6B) (without mod!) // (r - x) = 0, (0) // - M' + (0 or 2B), (1) // -2M' + (0 or 2B or 4B), (2) // -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1) // we checked that // ((1) mod MOD1) mod 5 = 2 // ((2) mod MOD1) mod 5 = 3 // ((3) mod MOD1) mod 5 = 4 long long diff = c1[i] - internal::safe_mod((long long) (x), (long long) (MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = { 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } } // namespace atcoder ll modpow(ll x, ll a) { ll ans = 1; while (a) { if (a & 1) ans = ans * x % MOD; a >>= 1; x = x * x % MOD; } return ans; } ll inv(ll x) { return modpow(x, MOD - 2); } vector<ll> fact, invfact; void buildFact(int n) { fact = vector<ll>(n + 1, 1); invfact = vector<ll>(n + 1, 1); for (int i = 1; i <= n; i++) { fact[i] = fact[i - 1] * i % MOD; invfact[i] = inv(fact[i]); } } ll comb(ll n, ll k) { return fact[n] * invfact[n - k] % MOD * invfact[k] % MOD; } int main() { int n; cin >> n; buildFact(n); string s; cin >> s; vector<ll> a(n, 0), b(n, 0); for (int i = 0; i < n; i++) { if (s[i] == 'i') { a[i] = 1; } else { b[n - i - 1] = 1; } } vector<ll> x = atcoder::convolution(a, b); vector<ll> c(n - 1), d(n - 1); for (int i = 0; i <= n - 2; i++) { c[i] = x[i] * fact[n - 2 - i]; d[i] = invfact[i]; } vector<ll> y = atcoder::convolution(c, d); ll ans = 0; for (int i = 0; i <= n - 2; i++) { ans = ans ^ (y[i] * invfact[n - 2 - i] % MOD); } cout << ans << endl; return 0; }