結果

問題 No.1504 ヌメロニム
ユーザー やむなくやむなく
提出日時 2020-12-13 17:45:06
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 279 ms / 2,000 ms
コード長 27,710 bytes
コンパイル時間 3,370 ms
コンパイル使用メモリ 235,724 KB
実行使用メモリ 37,748 KB
最終ジャッジ日時 2024-09-20 06:11:17
合計ジャッジ時間 10,284 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,812 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,944 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 2 ms
6,940 KB
testcase_10 AC 2 ms
6,940 KB
testcase_11 AC 2 ms
6,944 KB
testcase_12 AC 2 ms
6,940 KB
testcase_13 AC 2 ms
6,940 KB
testcase_14 AC 2 ms
6,944 KB
testcase_15 AC 2 ms
6,940 KB
testcase_16 AC 2 ms
6,940 KB
testcase_17 AC 2 ms
6,944 KB
testcase_18 AC 2 ms
6,940 KB
testcase_19 AC 1 ms
6,944 KB
testcase_20 AC 4 ms
6,940 KB
testcase_21 AC 3 ms
6,944 KB
testcase_22 AC 3 ms
6,944 KB
testcase_23 AC 1 ms
6,940 KB
testcase_24 AC 271 ms
35,088 KB
testcase_25 AC 154 ms
25,536 KB
testcase_26 AC 278 ms
37,404 KB
testcase_27 AC 163 ms
29,204 KB
testcase_28 AC 166 ms
29,356 KB
testcase_29 AC 275 ms
36,780 KB
testcase_30 AC 273 ms
36,692 KB
testcase_31 AC 159 ms
26,908 KB
testcase_32 AC 164 ms
28,796 KB
testcase_33 AC 274 ms
36,160 KB
testcase_34 AC 40 ms
9,356 KB
testcase_35 AC 33 ms
7,048 KB
testcase_36 AC 134 ms
17,368 KB
testcase_37 AC 18 ms
6,940 KB
testcase_38 AC 277 ms
37,628 KB
testcase_39 AC 276 ms
37,748 KB
testcase_40 AC 277 ms
37,512 KB
testcase_41 AC 279 ms
37,452 KB
testcase_42 AC 279 ms
37,440 KB
testcase_43 AC 276 ms
37,588 KB
testcase_44 AC 277 ms
37,580 KB
testcase_45 AC 277 ms
37,484 KB
testcase_46 AC 277 ms
37,488 KB
testcase_47 AC 277 ms
37,548 KB
testcase_48 AC 159 ms
27,180 KB
testcase_49 AC 155 ms
25,520 KB
testcase_50 AC 4 ms
6,940 KB
testcase_51 AC 2 ms
6,944 KB
testcase_52 AC 2 ms
6,940 KB
testcase_53 AC 3 ms
6,944 KB
testcase_54 AC 2 ms
6,940 KB
testcase_55 AC 33 ms
6,944 KB
testcase_56 AC 2 ms
6,944 KB
testcase_57 AC 1 ms
6,940 KB
testcase_58 AC 2 ms
6,944 KB
testcase_59 AC 2 ms
6,944 KB
testcase_60 AC 2 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

//
// AC solution (tester)
//

#include <bits/stdc++.h>

using namespace std;

#define rep(i, n) for(int i = 0; i < (n); i++)
#define repl(i, l, r) for(int i = (l); i < (r); i++)
#define per(i, n) for(int i = ((n)-1); i >= 0; i--)
#define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--)
#define all(x) (x).begin(),(x).end()
#define MOD 998244353
#define IINF 1000000000
#define LINF 1000000000000000000
#define SP <<" "<<
#define CYES cout<<"Yes"<<endl
#define CNO cout<<"No"<<endl
#define CFS cin.tie(0);ios::sync_with_stdio(false)
#define CST(x) cout<<fixed<<setprecision(x)
#ifdef _MSC_VER
#include <intrin.h>
#endif

using ll = long long;
using ld = long double;
using vi = vector<int>;
using mti = vector<vector<int>>;
using vl = vector<ll>;
using mtl = vector<vector<ll>>;
using pi = pair<int, int>;
using pl = pair<ll, ll>;
template<typename T>
using heap = priority_queue<T, vector<T>, function<bool(const T, const T)>>;


namespace atcoder {

    namespace internal {

#ifndef _MSC_VER
        template<class T>
        using is_signed_int128 =
        typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                std::true_type,
                std::false_type>::type;

        template<class T>
        using is_unsigned_int128 =
        typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                std::true_type,
                std::false_type>::type;

        template<class T>
        using make_unsigned_int128 =
        typename std::conditional<std::is_same<T, __int128_t>::value,
                __uint128_t,
                unsigned __int128>;

        template<class T>
        using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                      is_signed_int128<T>::value ||
                                                      is_unsigned_int128<T>::value,
                std::true_type,
                std::false_type>::type;

        template<class T>
        using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                         std::is_signed<T>::value) ||
                                                        is_signed_int128<T>::value,
                std::true_type,
                std::false_type>::type;

        template<class T>
        using is_unsigned_int =
        typename std::conditional<(is_integral<T>::value &&
                                   std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                std::true_type,
                std::false_type>::type;

        template<class T>
        using to_unsigned = typename std::conditional<
                is_signed_int128<T>::value,
                make_unsigned_int128<T>,
                typename std::conditional<std::is_signed<T>::value,
                        std::make_unsigned<T>,
                        std::common_type<T>>::type>::type;

#else

        template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

        template<class T>
        using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

        template<class T>
        using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

        template<class T> using to_unsigned_t = typename to_unsigned<T>::type;

    }  // namespace internal

}  // namespace atcoder

namespace atcoder {

    namespace internal {

// @param m `1 <= m`
// @return x mod m
        constexpr long long safe_mod(long long x, long long m) {
            x %= m;
            if (x < 0) x += m;
            return x;
        }

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
        struct barrett {
            unsigned int _m;
            unsigned long long im;

            // @param m `1 <= m < 2^31`
            barrett(unsigned int m) : _m(m), im((unsigned long long) (-1) / m + 1) {}

            // @return m
            unsigned int umod() const { return _m; }

            // @param a `0 <= a < m`
            // @param b `0 <= b < m`
            // @return `a * b % m`
            unsigned int mul(unsigned int a, unsigned int b) const {
                // [1] m = 1
                // a = b = im = 0, so okay

                // [2] m >= 2
                // im = ceil(2^64 / m)
                // -> im * m = 2^64 + r (0 <= r < m)
                // let z = a*b = c*m + d (0 <= c, d < m)
                // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
                // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
                // ((ab * im) >> 64) == c or c + 1
                unsigned long long z = a;
                z *= b;
#ifdef _MSC_VER
                unsigned long long x;
        _umul128(z, im, &x);
#else
                unsigned long long x =
                        (unsigned long long) (((unsigned __int128) (z) * im) >> 64);
#endif
                unsigned int v = (unsigned int) (z - x * _m);
                if (_m <= v) v += _m;
                return v;
            }
        };

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
        constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
            if (m == 1) return 0;
            unsigned int _m = (unsigned int) (m);
            unsigned long long r = 1;
            unsigned long long y = safe_mod(x, m);
            while (n) {
                if (n & 1) r = (r * y) % _m;
                y = (y * y) % _m;
                n >>= 1;
            }
            return r;
        }

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
        constexpr bool is_prime_constexpr(int n) {
            if (n <= 1) return false;
            if (n == 2 || n == 7 || n == 61) return true;
            if (n % 2 == 0) return false;
            long long d = n - 1;
            while (d % 2 == 0) d /= 2;
            constexpr long long bases[3] = {2, 7, 61};
            for (long long a : bases) {
                long long t = d;
                long long y = pow_mod_constexpr(a, t, n);
                while (t != n - 1 && y != 1 && y != n - 1) {
                    y = y * y % n;
                    t <<= 1;
                }
                if (y != n - 1 && t % 2 == 0) {
                    return false;
                }
            }
            return true;
        }

        template<int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
        constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
            a = safe_mod(a, b);
            if (a == 0) return {b, 0};

            // Contracts:
            // [1] s - m0 * a = 0 (mod b)
            // [2] t - m1 * a = 0 (mod b)
            // [3] s * |m1| + t * |m0| <= b
            long long s = b, t = a;
            long long m0 = 0, m1 = 1;

            while (t) {
                long long u = s / t;
                s -= t * u;
                m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

                // [3]:
                // (s - t * u) * |m1| + t * |m0 - m1 * u|
                // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
                // = s * |m1| + t * |m0| <= b

                auto tmp = s;
                s = t;
                t = tmp;
                tmp = m0;
                m0 = m1;
                m1 = tmp;
            }
            // by [3]: |m0| <= b/g
            // by g != b: |m0| < b/g
            if (m0 < 0) m0 += b / s;
            return {s, m0};
        }

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
        constexpr int primitive_root_constexpr(int m) {
            if (m == 2) return 1;
            if (m == 167772161) return 3;
            if (m == 469762049) return 3;
            if (m == 754974721) return 11;
            if (m == 998244353) return 3;
            int divs[20] = {};
            divs[0] = 2;
            int cnt = 1;
            int x = (m - 1) / 2;
            while (x % 2 == 0) x /= 2;
            for (int i = 3; (long long) (i) * i <= x; i += 2) {
                if (x % i == 0) {
                    divs[cnt++] = i;
                    while (x % i == 0) {
                        x /= i;
                    }
                }
            }
            if (x > 1) {
                divs[cnt++] = x;
            }
            for (int g = 2;; g++) {
                bool ok = true;
                for (int i = 0; i < cnt; i++) {
                    if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                        ok = false;
                        break;
                    }
                }
                if (ok) return g;
            }
        }

        template<int m> constexpr int primitive_root = primitive_root_constexpr(m);

    }  // namespace internal

}  // namespace atcoder

namespace atcoder {

    namespace internal {

        struct modint_base {
        };
        struct static_modint_base : modint_base {
        };

        template<class T> using is_modint = std::is_base_of<modint_base, T>;
        template<class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

    }  // namespace internal

    template<int m, std::enable_if_t<(1 <= m)> * = nullptr>
    struct static_modint : internal::static_modint_base {
        using mint = static_modint;

    public:
        static constexpr int mod() { return m; }

        static mint raw(int v) {
            mint x;
            x._v = v;
            return x;
        }

        static_modint() : _v(0) {}

        template<class T, internal::is_signed_int_t<T> * = nullptr>
        static_modint(T v) {
            long long x = (long long) (v % (long long) (umod()));
            if (x < 0) x += umod();
            _v = (unsigned int) (x);
        }

        template<class T, internal::is_unsigned_int_t<T> * = nullptr>
        static_modint(T v) {
            _v = (unsigned int) (v % umod());
        }

        static_modint(bool v) { _v = ((unsigned int) (v) % umod()); }

        unsigned int val() const { return _v; }

        mint &operator++() {
            _v++;
            if (_v == umod()) _v = 0;
            return *this;
        }

        mint &operator--() {
            if (_v == 0) _v = umod();
            _v--;
            return *this;
        }

        mint operator++(int) {
            mint result = *this;
            ++*this;
            return result;
        }

        mint operator--(int) {
            mint result = *this;
            --*this;
            return result;
        }

        mint &operator+=(const mint &rhs) {
            _v += rhs._v;
            if (_v >= umod()) _v -= umod();
            return *this;
        }

        mint &operator-=(const mint &rhs) {
            _v -= rhs._v;
            if (_v >= umod()) _v += umod();
            return *this;
        }

        mint &operator*=(const mint &rhs) {
            unsigned long long z = _v;
            z *= rhs._v;
            _v = (unsigned int) (z % umod());
            return *this;
        }

        mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }

        mint operator+() const { return *this; }

        mint operator-() const { return mint() - *this; }

        mint pow(long long n) const {
            assert(0 <= n);
            mint x = *this, r = 1;
            while (n) {
                if (n & 1) r *= x;
                x *= x;
                n >>= 1;
            }
            return r;
        }

        mint inv() const {
            if (prime) {
                assert(_v);
                return pow(umod() - 2);
            } else {
                auto eg = internal::inv_gcd(_v, m);
                assert(eg.first == 1);
                return eg.second;
            }
        }

        friend mint operator+(const mint &lhs, const mint &rhs) {
            return mint(lhs) += rhs;
        }

        friend mint operator-(const mint &lhs, const mint &rhs) {
            return mint(lhs) -= rhs;
        }

        friend mint operator*(const mint &lhs, const mint &rhs) {
            return mint(lhs) *= rhs;
        }

        friend mint operator/(const mint &lhs, const mint &rhs) {
            return mint(lhs) /= rhs;
        }

        friend bool operator==(const mint &lhs, const mint &rhs) {
            return lhs._v == rhs._v;
        }

        friend bool operator!=(const mint &lhs, const mint &rhs) {
            return lhs._v != rhs._v;
        }

    private:
        unsigned int _v;

        static constexpr unsigned int umod() { return m; }

        static constexpr bool prime = internal::is_prime<m>;
    };

    template<int id>
    struct dynamic_modint : internal::modint_base {
        using mint = dynamic_modint;

    public:
        static int mod() { return (int) (bt.umod()); }

        static void set_mod(int m) {
            assert(1 <= m);
            bt = internal::barrett(m);
        }

        static mint raw(int v) {
            mint x;
            x._v = v;
            return x;
        }

        dynamic_modint() : _v(0) {}

        template<class T, internal::is_signed_int_t<T> * = nullptr>
        dynamic_modint(T v) {
            long long x = (long long) (v % (long long) (mod()));
            if (x < 0) x += mod();
            _v = (unsigned int) (x);
        }

        template<class T, internal::is_unsigned_int_t<T> * = nullptr>
        dynamic_modint(T v) {
            _v = (unsigned int) (v % mod());
        }

        dynamic_modint(bool v) { _v = ((unsigned int) (v) % mod()); }

        unsigned int val() const { return _v; }

        mint &operator++() {
            _v++;
            if (_v == umod()) _v = 0;
            return *this;
        }

        mint &operator--() {
            if (_v == 0) _v = umod();
            _v--;
            return *this;
        }

        mint operator++(int) {
            mint result = *this;
            ++*this;
            return result;
        }

        mint operator--(int) {
            mint result = *this;
            --*this;
            return result;
        }

        mint &operator+=(const mint &rhs) {
            _v += rhs._v;
            if (_v >= umod()) _v -= umod();
            return *this;
        }

        mint &operator-=(const mint &rhs) {
            _v += mod() - rhs._v;
            if (_v >= umod()) _v -= umod();
            return *this;
        }

        mint &operator*=(const mint &rhs) {
            _v = bt.mul(_v, rhs._v);
            return *this;
        }

        mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }

        mint operator+() const { return *this; }

        mint operator-() const { return mint() - *this; }

        mint pow(long long n) const {
            assert(0 <= n);
            mint x = *this, r = 1;
            while (n) {
                if (n & 1) r *= x;
                x *= x;
                n >>= 1;
            }
            return r;
        }

        mint inv() const {
            auto eg = internal::inv_gcd(_v, mod());
            assert(eg.first == 1);
            return eg.second;
        }

        friend mint operator+(const mint &lhs, const mint &rhs) {
            return mint(lhs) += rhs;
        }

        friend mint operator-(const mint &lhs, const mint &rhs) {
            return mint(lhs) -= rhs;
        }

        friend mint operator*(const mint &lhs, const mint &rhs) {
            return mint(lhs) *= rhs;
        }

        friend mint operator/(const mint &lhs, const mint &rhs) {
            return mint(lhs) /= rhs;
        }

        friend bool operator==(const mint &lhs, const mint &rhs) {
            return lhs._v == rhs._v;
        }

        friend bool operator!=(const mint &lhs, const mint &rhs) {
            return lhs._v != rhs._v;
        }

    private:
        unsigned int _v;
        static internal::barrett bt;

        static unsigned int umod() { return bt.umod(); }
    };

    template<int id> internal::barrett dynamic_modint<id>::bt = 998244353;

    using modint998244353 = static_modint<998244353>;
    using modint1000000007 = static_modint<1000000007>;
    using modint = dynamic_modint<-1>;

    namespace internal {

        template<class T>
        using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

        template<class T>
        using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

        template<class>
        struct is_dynamic_modint : public std::false_type {
        };
        template<int id>
        struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {
        };

        template<class T>
        using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

    }  // namespace internal

}  // namespace atcoder

namespace atcoder {

    namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
        int ceil_pow2(int n) {
            int x = 0;
            while ((1U << x) < (unsigned int) (n)) x++;
            return x;
        }

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
        int bsf(unsigned int n) {
#ifdef _MSC_VER
            unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
            return __builtin_ctz(n);
#endif
        }

    }  // namespace internal

}  // namespace atcoder

namespace atcoder {

    namespace internal {

        template<class mint, internal::is_static_modint_t<mint> * = nullptr>
        void butterfly(std::vector<mint> &a) {
            static constexpr int g = internal::primitive_root<mint::mod()>;
            int n = int(a.size());
            int h = internal::ceil_pow2(n);

            static bool first = true;
            static mint sum_e[30];  // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
            if (first) {
                first = false;
                mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
                int cnt2 = bsf(mint::mod() - 1);
                mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
                for (int i = cnt2; i >= 2; i--) {
                    // e^(2^i) == 1
                    es[i - 2] = e;
                    ies[i - 2] = ie;
                    e *= e;
                    ie *= ie;
                }
                mint now = 1;
                for (int i = 0; i <= cnt2 - 2; i++) {
                    sum_e[i] = es[i] * now;
                    now *= ies[i];
                }
            }
            for (int ph = 1; ph <= h; ph++) {
                int w = 1 << (ph - 1), p = 1 << (h - ph);
                mint now = 1;
                for (int s = 0; s < w; s++) {
                    int offset = s << (h - ph + 1);
                    for (int i = 0; i < p; i++) {
                        auto l = a[i + offset];
                        auto r = a[i + offset + p] * now;
                        a[i + offset] = l + r;
                        a[i + offset + p] = l - r;
                    }
                    now *= sum_e[bsf(~(unsigned int) (s))];
                }
            }
        }

        template<class mint, internal::is_static_modint_t<mint> * = nullptr>
        void butterfly_inv(std::vector<mint> &a) {
            static constexpr int g = internal::primitive_root<mint::mod()>;
            int n = int(a.size());
            int h = internal::ceil_pow2(n);

            static bool first = true;
            static mint sum_ie[30];  // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
            if (first) {
                first = false;
                mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
                int cnt2 = bsf(mint::mod() - 1);
                mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
                for (int i = cnt2; i >= 2; i--) {
                    // e^(2^i) == 1
                    es[i - 2] = e;
                    ies[i - 2] = ie;
                    e *= e;
                    ie *= ie;
                }
                mint now = 1;
                for (int i = 0; i <= cnt2 - 2; i++) {
                    sum_ie[i] = ies[i] * now;
                    now *= es[i];
                }
            }

            for (int ph = h; ph >= 1; ph--) {
                int w = 1 << (ph - 1), p = 1 << (h - ph);
                mint inow = 1;
                for (int s = 0; s < w; s++) {
                    int offset = s << (h - ph + 1);
                    for (int i = 0; i < p; i++) {
                        auto l = a[i + offset];
                        auto r = a[i + offset + p];
                        a[i + offset] = l + r;
                        a[i + offset + p] =
                                (unsigned long long) (mint::mod() + l.val() - r.val()) *
                                inow.val();
                    }
                    inow *= sum_ie[bsf(~(unsigned int) (s))];
                }
            }
        }

    }  // namespace internal

    template<class mint, internal::is_static_modint_t<mint> * = nullptr>
    std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
        int n = int(a.size()), m = int(b.size());
        if (!n || !m) return {};
        if (std::min(n, m) <= 60) {
            if (n < m) {
                std::swap(n, m);
                std::swap(a, b);
            }
            std::vector<mint> ans(n + m - 1);
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < m; j++) {
                    ans[i + j] += a[i] * b[j];
                }
            }
            return ans;
        }
        int z = 1 << internal::ceil_pow2(n + m - 1);
        a.resize(z);
        internal::butterfly(a);
        b.resize(z);
        internal::butterfly(b);
        for (int i = 0; i < z; i++) {
            a[i] *= b[i];
        }
        internal::butterfly_inv(a);
        a.resize(n + m - 1);
        mint iz = mint(z).inv();
        for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
        return a;
    }

    template<unsigned int mod = 998244353,
            class T,
            std::enable_if_t<internal::is_integral<T>::value> * = nullptr>
    std::vector<T> convolution(const std::vector<T> &a, const std::vector<T> &b) {
        int n = int(a.size()), m = int(b.size());
        if (!n || !m) return {};

        using mint = static_modint<mod>;
        std::vector<mint> a2(n), b2(m);
        for (int i = 0; i < n; i++) {
            a2[i] = mint(a[i]);
        }
        for (int i = 0; i < m; i++) {
            b2[i] = mint(b[i]);
        }
        auto c2 = convolution(move(a2), move(b2));
        std::vector<T> c(n + m - 1);
        for (int i = 0; i < n + m - 1; i++) {
            c[i] = c2[i].val();
        }
        return c;
    }

    std::vector<long long> convolution_ll(const std::vector<long long> &a,
                                          const std::vector<long long> &b) {
        int n = int(a.size()), m = int(b.size());
        if (!n || !m) return {};

        static constexpr unsigned long long MOD1 = 754974721;  // 2^24
        static constexpr unsigned long long MOD2 = 167772161;  // 2^25
        static constexpr unsigned long long MOD3 = 469762049;  // 2^26
        static constexpr unsigned long long M2M3 = MOD2 * MOD3;
        static constexpr unsigned long long M1M3 = MOD1 * MOD3;
        static constexpr unsigned long long M1M2 = MOD1 * MOD2;
        static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;

        static constexpr unsigned long long i1 =
                internal::inv_gcd(MOD2 * MOD3, MOD1).second;
        static constexpr unsigned long long i2 =
                internal::inv_gcd(MOD1 * MOD3, MOD2).second;
        static constexpr unsigned long long i3 =
                internal::inv_gcd(MOD1 * MOD2, MOD3).second;

        auto c1 = convolution<MOD1>(a, b);
        auto c2 = convolution<MOD2>(a, b);
        auto c3 = convolution<MOD3>(a, b);

        std::vector<long long> c(n + m - 1);
        for (int i = 0; i < n + m - 1; i++) {
            unsigned long long x = 0;
            x += (c1[i] * i1) % MOD1 * M2M3;
            x += (c2[i] * i2) % MOD2 * M1M3;
            x += (c3[i] * i3) % MOD3 * M1M2;
            // B = 2^63, -B <= x, r(real value) < B
            // (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
            // r = c1[i] (mod MOD1)
            // focus on MOD1
            // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
            // r = x,
            //     x - M' + (0 or 2B),
            //     x - 2M' + (0, 2B or 4B),
            //     x - 3M' + (0, 2B, 4B or 6B) (without mod!)
            // (r - x) = 0, (0)
            //           - M' + (0 or 2B), (1)
            //           -2M' + (0 or 2B or 4B), (2)
            //           -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
            // we checked that
            //   ((1) mod MOD1) mod 5 = 2
            //   ((2) mod MOD1) mod 5 = 3
            //   ((3) mod MOD1) mod 5 = 4
            long long diff =
                    c1[i] - internal::safe_mod((long long) (x), (long long) (MOD1));
            if (diff < 0) diff += MOD1;
            static constexpr unsigned long long offset[5] = {
                    0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
            x -= offset[diff % 5];
            c[i] = x;
        }

        return c;
    }

}  // namespace atcoder

ll modpow(ll x, ll a) {
    ll ans = 1;
    while (a) {
        if (a & 1) ans = ans * x % MOD;
        a >>= 1;
        x = x * x % MOD;
    }
    return ans;
}

ll inv(ll x) {
    return modpow(x, MOD - 2);
}

vector<ll> fact, invfact;

void buildFact(int n) {
    fact = vector<ll>(n + 1, 1);
    invfact = vector<ll>(n + 1, 1);
    for (int i = 1; i <= n; i++) {
        fact[i] = fact[i - 1] * i % MOD;
        invfact[i] = inv(fact[i]);
    }
}

ll comb(ll n, ll k) {
    return fact[n] * invfact[n - k] % MOD * invfact[k] % MOD;
}

int main() {
    int n;
    cin >> n;
    buildFact(n);
    string s;
    cin >> s;
    vector<ll> a(n, 0), b(n, 0);
    for (int i = 0; i < n; i++) {
        if (s[i] == 'i') {
            a[i] = 1;
        } else {
            b[n - i - 1] = 1;
        }
    }
    vector<ll> x = atcoder::convolution(a, b);
    vector<ll> c(n - 1), d(n - 1);
    for (int i = 0; i <= n - 2; i++) {
        c[i] = x[i] * fact[n - 2 - i];
        d[i] = invfact[i];
    }
    vector<ll> y = atcoder::convolution(c, d);
    ll ans = 0;
    for (int i = 0; i <= n - 2; i++) {
        ans = ans ^ (y[i] * invfact[n - 2 - i] % MOD);
    }
    cout << ans << endl;
    return 0;
}
0