結果
| 問題 | No.802 だいたい等差数列 |
| コンテスト | |
| ユーザー |
mugen_1337
|
| 提出日時 | 2020-12-14 10:46:32 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 9,263 bytes |
| 記録 | |
| コンパイル時間 | 3,329 ms |
| コンパイル使用メモリ | 208,208 KB |
| 最終ジャッジ日時 | 2025-01-17 00:28:32 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 TLE * 1 |
| other | AC * 1 WA * 1 TLE * 28 |
ソースコード
#include<bits/stdc++.h>
using namespace std;
#define ALL(x) begin(x),end(x)
#define rep(i,n) for(int i=0;i<(n);i++)
#define debug(v) cout<<#v<<":";for(auto x:v){cout<<x<<' ';}cout<<endl;
#define mod 1000000007
using ll=long long;
const int INF=1000000000;
const ll LINF=1001002003004005006ll;
int dx[]={1,0,-1,0},dy[]={0,1,0,-1};
// ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
template<class T>bool chmax(T &a,const T &b){if(a<b){a=b;return true;}return false;}
template<class T>bool chmin(T &a,const T &b){if(b<a){a=b;return true;}return false;}
struct IOSetup{
IOSetup(){
cin.tie(0);
ios::sync_with_stdio(0);
cout<<fixed<<setprecision(12);
}
} iosetup;
template<typename T>
ostream &operator<<(ostream &os,const vector<T>&v){
for(int i=0;i<(int)v.size();i++) os<<v[i]<<(i+1==(int)v.size()?"":" ");
return os;
}
template<typename T>
istream &operator>>(istream &is,vector<T>&v){
for(T &x:v)is>>x;
return is;
}
template<ll Mod>
struct ModInt{
long long x;
ModInt():x(0){}
ModInt(long long y):x(y>=0?y%Mod:(Mod-(-y)%Mod)%Mod){}
ModInt &operator+=(const ModInt &p){
if((x+=p.x)>=Mod) x-=Mod;
return *this;
}
ModInt &operator-=(const ModInt &p){
if((x+=Mod-p.x)>=Mod)x-=Mod;
return *this;
}
ModInt &operator*=(const ModInt &p){
x=(int)(1ll*x*p.x%Mod);
return *this;
}
ModInt &operator/=(const ModInt &p){
(*this)*=p.inverse();
return *this;
}
ModInt operator-()const{return ModInt(-x);}
ModInt operator+(const ModInt &p)const{return ModInt(*this)+=p;}
ModInt operator-(const ModInt &p)const{return ModInt(*this)-=p;}
ModInt operator*(const ModInt &p)const{return ModInt(*this)*=p;}
ModInt operator/(const ModInt &p)const{return ModInt(*this)/=p;}
bool operator==(const ModInt &p)const{return x==p.x;}
bool operator!=(const ModInt &p)const{return x!=p.x;}
ModInt inverse()const{
int a=x,b=Mod,u=1,v=0,t;
while(b>0){
t=a/b;
swap(a-=t*b,b);swap(u-=t*v,v);
}
return ModInt(u);
}
ModInt pow(long long n)const{
ModInt ret(1),mul(x);
while(n>0){
if(n&1) ret*=mul;
mul*=mul;n>>=1;
}
return ret;
}
friend ostream &operator<<(ostream &os,const ModInt &p){return os<<p.x;}
friend istream &operator>>(istream &is,ModInt &a){long long t;is>>t;a=ModInt<Mod>(t);return (is);}
static int get_mod(){return Mod;}
};
using mint=ModInt<mod>;
template<typename T>
struct FormalPowerSeries:vector<T>{
using vector<T>::vector;
using P=FormalPowerSeries;
using MULT=function<P(P,P)>;
static MULT &get_mult(){static MULT mult=nullptr;return mult;}
static void set_mult(MULT f){get_mult()=f;}
void shrink(){while(this->size() and this->back()==T(0)) this->pop_back();}
P pre(int sz)const{return P(begin(*this),begin(*this)+min((int)this->size(),sz));}
P operator+(const P &rhs)const{return P(*this)+=rhs;}
P operator+(const T &rhs)const{return P(*this)+=rhs;}
P operator-(const P &rhs)const{return P(*this)-=rhs;}
P operator-(const T &rhs)const{return P(*this)-=rhs;}
P operator*(const P &rhs)const{return P(*this)*=rhs;}
P operator*(const T &rhs)const{return P(*this)*=rhs;}
P operator/(const P &rhs)const{return P(*this)/=rhs;}
P operator%(const P &rhs)const{return P(*this)%=rhs;}
P &operator+=(const P &rhs){
if(rhs.size()>this->size()) this->resize(rhs.size());
for(int i=0;i<(int)rhs.size();i++) (*this)[i]+=rhs[i];
return (*this);
}
P &operator+=(const T &rhs){
if(this->empty()) this->resize(1);
(*this)[0]+=rhs;
return (*this);
}
P &operator-=(const P &rhs){
if(rhs.size()>this->size()) this->resize(rhs.size());
for(int i=0;i<(int)rhs.size();i++) (*this)[i]-=rhs[i];
shrink();
return (*this);
}
P &operator-=(const T &rhs){
if(this->empty()) this->resize(1);
(*this)[0]-=rhs;
shrink();
return (*this);
}
P &operator*=(const T &rhs){
const int n=(int)this->size();
for(int i=0;i<n;i++) (*this)[i]*=rhs;
return (*this);
}
P &operator*=(const P &rhs){
if(this->empty() or rhs.empty()){
this->clear();
return (*this);
}
assert(get_mult()!=nullptr);
return (*this)=get_mult()(*this,rhs);
}
P &operator%=(const P &rhs){return (*this)-=(*this)/rhs*rhs;}
P operator-()const{
P ret(this->size());
for(int i=0;i<(int)this->size();i++) ret[i]=-(*this)[i];
return ret;
}
P &operator/=(const P &rhs){
if(this->size()<rhs.size()){
this->clear();
return (*this);
}
int n=(int)this->size()-rhs.size()+1;
return (*this)=(rev().pre(n)*rhs.rev().inv(n));
}
P operator>>(int sz)const{
if((int)this->size()<=sz) return {};
P ret(*this);
ret.erase(ret.begin(),ret.begin()+sz);
return ret;
}
P operator<<(int sz)const{
P ret(*this);
ret.insert(ret.begin(),sz,T(0));
return ret;
}
P rev(int deg=-1)const{
P ret(*this);
if(deg!=-1) ret.resize(deg,T(0));
reverse(begin(ret),end(ret));
return ret;
}
// 微分
P diff()const{
const int n=(int)this->size();
P ret(max(0,n-1));
for(int i=1;i<n;i++) ret[i-1]=(*this)[i]*T(i);
return ret;
}
// 積分
P integral()const{
const int n=(int)this->size();
P ret(n+1);
ret[0]=T(0);
for(int i=0;i<n;i++) ret[i+1]=(*this)[i]/T(i+1);
return ret;
}
// ref : https://qiita.com/hotman78/items/f0e6d2265badd84d429a
P inv(int deg=-1)const{
assert(((*this)[0])!=T(0));
const int n=(int)this->size();
if(deg==-1) deg=n;
P ret({T(1)/(*this)[0]});
for(int i=1;i<deg;i<<=1) ret=(ret+ret-ret*ret*pre(i<<1)).pre(i<<1);
return ret.pre(deg);
}
// ?
P log(int deg=-1)const{
assert((*this)[0]==1);
const int n=(int)this->size();
if(deg==-1) deg=n;
return (this->diff()*this->inv(deg)).pre(deg-1).integral();
}
// ?
P exp(int deg=-1)const{
assert((*this)[0]==T(0));
const int n=(int)this->size();
if(deg==-1) deg=n;
P ret({T(1)});
for(int i=1;i<deg;i<<=1) ret=(ret*(pre(i<<1)+T(1)-ret.log(i<<1))).pre(i<<1);
return ret.pre(deg);
}
// O(nlogn) with NTT
//
P pow_fast(long long k,int deg=-1){
int n=(int)this->size();
if(deg==-1) deg=n;
for(int i=0;i<n;i++){
if((*this)[i]!=T(0)){
T rev=T(1)/(*this)[i];
P ret=(((*this*rev)>>i).log()*k).exp()*((*this)[i].pow(k));
if(i*k>deg) return P(deg,T(0));
ret=(ret<<(i*k)).pre(deg);
if((int)ret.size()<deg) ret.resize(deg,T(0));
return ret;
}
}
return *this;
}
// O(Mult * log k)
// resize not verified
P pow(ll k,int deg=-1){
if(deg==-1) deg=1000000000;
P ret=P{1};
P b(*this);
while(k){
if(k&1) ret*=b;
b=b*b;
k>>=1;
if((int)ret.size()>deg) ret.resize(deg);
if((int)b.size()>deg) b.resize(deg);
}
return ret;
}
// [l,r) k個飛び
P slice(int l,int r,int k=1){
P ret;
for(int i=l;i<r;i+=k) ret.push_back((*this)[i]);
return ret;
}
/*
ref : https://atcoder.jp/contests/aising2020/submissions/15300636
http://q.c.titech.ac.jp/docs/progs/polynomial_division.html
order :
O(M(d)log(k)) (M(d) -> d次元,multiplyの計算量)
return :
[x^k] (*this) / q
*/
T nth_term(P q,ll k){
if(k==0) return (*this)[0]/q[0];
P p(*this),q_=q;
for(int i=1;i<(int)q_.size();i+=2) q_[i]*=-1;
q*=q_;p*=q_;// qは奇数項が消える
return p.slice(k%2,p.size(),2).nth_term(q.slice(0,q.size(),2),k/2);
}
};
using FPS=FormalPowerSeries<mint>;
auto multiply_naive(const FPS::P &lhs,const FPS::P &rhs){
assert(!lhs.empty() and !rhs.empty());
auto ret=FPS(int(lhs.size())+int(rhs.size())-1);
rep(i,(int)lhs.size())rep(j,(int)rhs.size()) ret[i+j]+=lhs[i]*rhs[j];
return ret;
}
/*
B = x^0 + x^1 + ... + x^m-1
P = ((x^d1 - x^d2) / (1 - x)) ^ (n-1)
B*Pの0~m-1項の和が答え
1e9+7で間に合うのかとかの感覚がないし
FPSのライブラリへの理解とかが少ないので解けるのかもわからない
ここからDPかなんかへのアプローチの転換をしたい.
また今度
*/
signed main(){
FPS::set_mult(multiply_naive);
int n,m,d1,d2;cin>>n>>m>>d1>>d2;
FPS B(m,1);
FPS P(m);
if(d1<d2){
P[d1]=1;
if(d2+1<m) P[d2+1]=-1;
P/=FPS{1,-1};
}else{
if(d1<m) P[d1]=1;
}
rep(i,n-1){
B*=P;
B.resize(m);
}
// debug(B);
mint res=0;
rep(i,m) res+=B[i];
cout<<res<<endl;
return 0;
}
mugen_1337