結果
| 問題 |
No.789 範囲の合計
|
| コンテスト | |
| ユーザー |
tktk_snsn
|
| 提出日時 | 2020-12-15 22:07:54 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 8,955 bytes |
| コンパイル時間 | 103 ms |
| コンパイル使用メモリ | 13,568 KB |
| 実行使用メモリ | 52,468 KB |
| 最終ジャッジ日時 | 2024-09-20 02:20:39 |
| 合計ジャッジ時間 | 11,258 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 12 TLE * 3 |
ソースコード
from operator import add
import sys
input = sys.stdin.buffer.readline
sys.setrecursionlimit(10 ** 7)
class SegTree(object):
def __init__(self, N, op_data, u_data):
self._n = N
self.log = (N-1).bit_length()
self.size = 1 << self.log
self.op = op_data
self.e = u_data
self.data = [u_data] * (2 * self.size)
# self.len = [1] * (2 * self.size)
def _update(self, i):
self.data[i] = self.op(self.data[i << 1], self.data[i << 1 | 1])
def initialize(self, arr):
""" segtreeをarrで初期化する。len(arr) == Nにすること """
for i, a in enumerate(arr, self.size):
self.data[i] = a
for i in reversed(range(1, self.size)):
self._update(i)
# self.len[i] = self.len[i << 1] + self.len[i << 1 | 1]
def update(self, p, x):
""" data[p] = x とする (0-indexed)"""
p += self.size
# self.data[p] = x
self.data[p] += x
for i in range(1, self.log + 1):
self._update(p >> i)
def get(self, p):
""" data[p]を返す """
return self.data[p + self.size]
def prod(self, l, r):
"""
op_data(data[l], data[l+1], ..., data[r-1])を返す (0-indexed)
"""
sml = self.e
smr = self.e
l += self.size
r += self.size
while l < r:
if l & 1:
sml = self.op(sml, self.data[l])
l += 1
if r & 1:
r -= 1
smr = self.op(self.data[r], smr)
l >>= 1
r >>= 1
return self.op(sml, smr)
def all_prod(self):
""" op(data[0], data[1], ... data[N-1])を返す """
return self.data[1]
def max_right(self, l, func):
"""
func(l, l+1, ..., r-1) = True,
func(l, l+1, ..., r-1, r) = Falseとなる r を返す
"""
if l == self._n:
return self._n
l += self.size
sm = self.e
while True:
while l % 2 == 0:
l >>= 1
if not func(self.op(sm, self.data[l])):
while l < self.size:
l <<= 1
if func(self.op(sm, self.data[l])):
sm = self.op(sm, self.data[l])
l += 1
return l - self.size
sm = self.op(sm, self.data[l])
l += 1
if (l & -l) == l:
break
return self._n
def min_left(self, r, func):
"""
func( l, l+1, ..., r-1) = True,
func(l-1, l, l+1, ..., r-1) = Falseとなる l を返す
"""
if r == 0:
return 0
r += self.size
sm = self.e
while True:
r -= 1
while r > 1 and r & 1:
r >>= 1
if not func(self.op(self.data[r], sm)):
while r < self.size:
r = r << 1 | 1
if func(self.op(self.data[r], sm)):
sm = self.op(self.data[r], sm)
r -= 1
return r + 1 - self.size
sm = self.op(self.data[r], sm)
if (r & -r) == r:
break
return 0
class LazySegTree(SegTree):
def __init__(self, N, op_data, u_data, op_lazy, u_lazy, op_merge):
super().__init__(N, op_data, u_data)
self.composition = op_lazy
self.mapping = op_merge
self.id = u_lazy
self.lazy = [u_lazy] * self.size
def _all_apply(self, i, F):
self.data[i] = self.mapping(F, self.data[i])
if i < self.size:
self.lazy[i] = self.composition(F, self.lazy[i])
def _push(self, i):
self._all_apply(i << 1, self.lazy[i])
self._all_apply(i << 1 | 1, self.lazy[i])
self.lazy[i] = self.id
def update(self, p, x):
""" data[p] = x とする (0-indexed)"""
p += self.size
for i in reversed(range(1, self.log + 1)):
self._push(p >> i)
self.data[p] = x
for i in range(1, self.log + 1):
self._update(p >> i)
def apply(self, p, F):
""" data[p]にFを作用させる(data[p] = op_merge(F, data[p])とする, 0-indexed) """
p += self.size
for i in reversed(range(1, self.log + 1)):
self._push(p >> i)
self.data[p] = self.mapping(F, self.data[p])
for i in range(1, self.log + 1):
self._update(p >> i)
def range_apply(self, l, r, F):
""" i = l, l+1, ..., r-1 について、Fを作用させる(op_merge(F, data[i]), 0-indexed) """
if l == r:
return
l += self.size
r += self.size
for i in reversed(range(1, self.log + 1)): # too->down
if ((l >> i) << i) != l:
self._push(l >> i)
if ((r >> i) << i) != r:
self._push((r - 1) >> i)
l2, r2 = l, r
while l < r:
if l & 1:
self._all_apply(l, F)
l += 1
if r & 1:
r -= 1
self._all_apply(r, F)
l >>= 1
r >>= 1
l, r = l2, r2
for i in range(1, self.log + 1):
if ((l >> i) << i) != l:
self._update(l >> i)
if ((r >> i) << i) != r:
self._update((r - 1) >> i)
def get(self, p):
""" data[p]を返す """
p += self.size
for i in reversed(range(1, self.log + 1)):
self._push(p >> i)
return self.data[p]
def prod(self, l, r):
"""
op_data(data[l], data[l+1], ..., data[r-1])を返す (0-indexed)
l == rの時は単位元u_dataを返す
"""
if l == r:
return self.e
l += self.size
r += self.size
for i in reversed(range(1, self.log + 1)):
if ((l >> i) << i) != l:
self._push(l >> i)
if ((r >> i) << i) != r:
self._push(r >> i)
sml = self.e
smr = self.e
while l < r:
if l & 1:
sml = self.op(sml, self.data[l])
l += 1
if r & 1:
r -= 1
smr = self.op(self.data[r], smr)
l >>= 1
r >>= 1
return self.op(sml, smr)
def max_right(self, l, func):
"""
func(l, l+1, ..., r-1) = True,
func(l, l+1, ..., r-1, r) = Falseとなる r を返す
"""
if l == self._n:
return self._n
l += self.size
for i in reversed(range(1, self.log + 1)):
self._push(l >> i)
sm = self.e
while True:
while l % 2 == 0:
l >>= 1
if not func(self.op(sm, self.data[[l]])):
while l < self.size:
self._push(l)
l <<= 1
if func(self.op(sm, self.data[l])):
sm = self.op(sm, self.data[l])
l += 1
return l - self.size
sm = self.op(sm, self.data[l])
l += 1
if (l & -l) == l:
break
return self._n
def min_left(self, r, func):
"""
func( l, l+1, ..., r-1) = True,
func(l-1, l, l+1, ..., r-1) = Falseとなる l を返す
"""
if r == 0:
return 0
r += self.size
for i in reversed(range(1, self.log + 1)):
self._push((r - 1) >> i)
sm = self.e
while True:
r -= 1
while r > 1 and r & 1:
r >>= 1
if not func(self.op(self.data[r], sm)):
while r < self.size:
self._push(r)
r = r << 1 | 1
if func(self.op(self.data[r], sm)):
sm = self.op(self.data[r], sm)
r -= 1
return r + 1 - self.size
sm = self.op(self.data[r], sm)
if (r & -r) == r:
break
return 0
"""
遅延セグ木(ac-library移植)
op_data(d_L, d_R) : d_Lとd_Rの二項演算, dataを返す
op_lazy(lz_new, lz_orig) : lz_origにlz_newを作用させる, lazyを返す
op_merge(lz, d) : dにlzを作用させる, dataを返す
"""
n = int(input())
A = set()
A.add(0)
A.add(10 ** 9)
query = []
for _ in range(n):
k, x, y = map(int, input().split())
if k == 0:
A.add(x)
else:
A.add(x)
A.add(y)
query.append((k, x, y))
sz = len(A)
atoi = {a: i for i, a in enumerate(sorted(A))}
seg = SegTree(sz, add, 0)
ans = 0
for k, x, y in query:
if k == 0:
i = atoi[x]
seg.update(i, y)
else:
l = atoi[x]
r = atoi[y] + 1
ans += seg.prod(l, r)
print(ans)
tktk_snsn