結果
問題 | No.1320 Two Type Min Cost Cycle |
ユーザー | hitonanode |
提出日時 | 2020-12-17 00:27:33 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 301 ms / 2,000 ms |
コード長 | 12,643 bytes |
コンパイル時間 | 2,947 ms |
コンパイル使用メモリ | 235,912 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-20 05:33:32 |
合計ジャッジ時間 | 8,783 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 4 ms
5,376 KB |
testcase_07 | AC | 155 ms
5,376 KB |
testcase_08 | AC | 6 ms
5,376 KB |
testcase_09 | AC | 236 ms
5,376 KB |
testcase_10 | AC | 207 ms
5,376 KB |
testcase_11 | AC | 151 ms
5,376 KB |
testcase_12 | AC | 19 ms
5,376 KB |
testcase_13 | AC | 69 ms
5,376 KB |
testcase_14 | AC | 6 ms
5,376 KB |
testcase_15 | AC | 221 ms
5,376 KB |
testcase_16 | AC | 3 ms
5,376 KB |
testcase_17 | AC | 86 ms
5,376 KB |
testcase_18 | AC | 84 ms
5,376 KB |
testcase_19 | AC | 174 ms
5,376 KB |
testcase_20 | AC | 3 ms
5,376 KB |
testcase_21 | AC | 133 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | AC | 5 ms
5,376 KB |
testcase_29 | AC | 294 ms
5,376 KB |
testcase_30 | AC | 2 ms
5,376 KB |
testcase_31 | AC | 49 ms
5,376 KB |
testcase_32 | AC | 2 ms
5,376 KB |
testcase_33 | AC | 64 ms
5,376 KB |
testcase_34 | AC | 42 ms
5,376 KB |
testcase_35 | AC | 3 ms
5,376 KB |
testcase_36 | AC | 3 ms
5,376 KB |
testcase_37 | AC | 2 ms
5,376 KB |
testcase_38 | AC | 3 ms
5,376 KB |
testcase_39 | AC | 2 ms
5,376 KB |
testcase_40 | AC | 2 ms
5,376 KB |
testcase_41 | AC | 2 ms
5,376 KB |
testcase_42 | AC | 2 ms
5,376 KB |
testcase_43 | AC | 298 ms
5,376 KB |
testcase_44 | AC | 148 ms
5,376 KB |
testcase_45 | AC | 301 ms
5,376 KB |
testcase_46 | AC | 61 ms
5,376 KB |
testcase_47 | AC | 62 ms
5,376 KB |
testcase_48 | AC | 250 ms
5,376 KB |
testcase_49 | AC | 28 ms
5,376 KB |
testcase_50 | AC | 2 ms
5,376 KB |
testcase_51 | AC | 2 ms
5,376 KB |
testcase_52 | AC | 14 ms
5,376 KB |
testcase_53 | AC | 7 ms
5,376 KB |
testcase_54 | AC | 249 ms
5,376 KB |
testcase_55 | AC | 251 ms
5,376 KB |
testcase_56 | AC | 254 ms
5,376 KB |
testcase_57 | AC | 169 ms
5,376 KB |
testcase_58 | AC | 168 ms
5,376 KB |
testcase_59 | AC | 168 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T, typename V> void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); } template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template <typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; } template <typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; } int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); } template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); } template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } #if __cplusplus >= 201703L template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os; } #endif template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; } template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl #else #define dbg(x) {} #endif template <typename T> struct ShortestPath { int V, E; int INVALID = -1; std::vector<std::vector<std::pair<int, T>>> to; ShortestPath() = default; ShortestPath(int V) : V(V), E(0), to(V) {} void add_edge(int s, int t, T len) { assert(0 <= s and s < V); assert(0 <= t and t < V); to[s].emplace_back(t, len); E++; } std::vector<T> dist; std::vector<int> prev; // Dijkstra algorithm // Complexity: O(E log E) void Dijkstra(int s) { assert(0 <= s and s < V); dist.assign(V, std::numeric_limits<T>::max()); dist[s] = 0; prev.assign(V, INVALID); using P = std::pair<T, int>; std::priority_queue<P, std::vector<P>, std::greater<P>> pq; pq.emplace(0, s); while (!pq.empty()) { T d; int v; std::tie(d, v) = pq.top(); pq.pop(); if (dist[v] < d) continue; for (auto nx : to[v]) { T dnx = d + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; pq.emplace(dnx, nx.first); } } } } // Bellman-Ford algorithm // Complexity: O(VE) bool BellmanFord(int s, int nb_loop) { assert(0 <= s and s < V); dist.assign(V, std::numeric_limits<T>::max()); dist[s] = 0; prev.assign(V, INVALID); for (int l = 0; l < nb_loop; l++) { bool upd = false; for (int v = 0; v < V; v++) { if (dist[v] == std::numeric_limits<T>::max()) continue; for (auto nx : to[v]) { T dnx = dist[v] + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; upd = true; } } } if (!upd) return true; } return false; } void ZeroOneBFS(int s) { assert(0 <= s and s < V); dist.assign(V, std::numeric_limits<T>::max()); dist[s] = 0; prev.assign(V, INVALID); std::deque<int> que; que.push_back(s); while (!que.empty()) { int v = que.front(); que.pop_front(); for (auto nx : to[v]) { T dnx = dist[v] + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; if (nx.second) { que.push_back(nx.first); } else { que.push_front(nx.first); } } } } } // Warshall-Floyd algorithm // Complexity: O(E + V^3) std::vector<std::vector<T>> dist2d; void WarshallFloyd() { dist2d.assign(V, std::vector<T>(V, std::numeric_limits<T>::max())); for (int i = 0; i < V; i++) { dist2d[i][i] = 0; for (auto p : to[i]) dist2d[i][p.first] = min(dist2d[i][p.first], p.second); } for (int k = 0; k < V; k++) { for (int i = 0; i < V; i++) { if (dist2d[i][k] = std::numeric_limits<T>::max()) continue; for (int j = 0; j < V; j++) { if (dist2d[k][j] = std::numeric_limits<T>::max()) continue; dist2d[i][j] = min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]); } } } } }; // Shortest cycle detection of UNDIRECTED SIMPLE graphs // Assumption: only two types of edges are permitted: weight = 0 or W ( > 0) // Complexity: O(E) // Verified: <https://codeforces.com/contest/1325/problem/E> struct ShortestCycle01 { int V, E; int INVALID = -1; std::vector<std::vector<std::pair<int, int>>> to; // (nxt, weight) ShortestCycle01() = default; ShortestCycle01(int V) : V(V), E(0), to(V) {} void add_edge(int s, int t, int len) { assert(0 <= s and s < V); assert(0 <= t and t < V); assert(len >= 0); to[s].emplace_back(t, len); to[t].emplace_back(s, len); E++; } std::vector<lint> dist; std::vector<int> prev; // Find minimum length simple cycle which passes vertex `v` // - return: (LEN, (a, b)) // - LEN: length of the shortest cycles if exists, numeric_limits<int>::max() otherwise. // - the cycle consists of vertices [v, ..., prev[prev[a]], prev[a], a, b, prev[b], prev[prev[b]], ..., v] std::pair<lint, std::pair<int, int>> Solve(int v) { assert(0 <= v and v < V); dist.assign(V, std::numeric_limits<lint>::max()); dist[v] = 0; prev.assign(V, -1); using P = pair<lint, pint>; std::priority_queue<P, vector<P>, greater<P>> bfsq; std::vector<std::pair<std::pair<int, int>, int>> add_edge; bfsq.emplace(0, pint(v, -1)); while (!bfsq.empty()) { auto [wnow, pp] = bfsq.top(); auto [now, prv] = pp; bfsq.pop(); for (auto nxt : to[now]) if (nxt.first != prv) { if (dist[nxt.first] == std::numeric_limits<lint>::max()) { dist[nxt.first] = dist[now] + nxt.second; prev[nxt.first] = now; bfsq.emplace(dist[nxt.first], pint(nxt.first, now)); } else { add_edge.emplace_back(std::make_pair(now, nxt.first), nxt.second); } } } lint minimum_cycle = std::numeric_limits<lint>::max(); int s = -1, t = -1; for (auto edge : add_edge) { int a = edge.first.first, b = edge.first.second; lint L = dist[a] + dist[b] + edge.second; if (L < minimum_cycle) minimum_cycle = L, s = a, t = b; } return std::make_pair(minimum_cycle, std::make_pair(s, t)); } }; // struct ShortestCycleOfUndirectedGraph { // int V, E; // std::vector<std::vector<std::pair<int, int>>> to; // ShortestCycleOfUndirectedGraph(int N) : V(N), E(0), to(N) {} // void add_edge(int s, int t, int len) { // assert(0 <= s and s < V); // assert(0 <= t and t < V); // assert(len >= 0); // to[s].emplace_back(t, len); // to[t].emplace_back(s, len); // E++; // } // std::array<std::vector<long long>, 2> dist; // std::array<std::vector<int>, 2> prev; // long long solve(int v) { // assert(0 <= v and v < V); // dist[0].assign(V, std::numeric_limits<long long>::max() / 2); // dist[1].assign(V, std::numeric_limits<long long>::max() / 2); // prev[0].assign(V, -1); // prev[1].assign(V, -1); // using P = std::pair<long long, int>; // std::priority_queue<P, std::vector<P>, std::greater<P>> pq; // while (!pq.empty()) { // long long wnow = pq.top().first; // int now = pq.top().second; // pq.pop(); // if (dist[1][now] < wnow) continue; // for (const auto nxtp : to[now]) { // int nxt = nxtp.first; // if (prev1[now] != nxt and chmin(dist1[nxt], dist1[now] + nxtp.second)) prev1[nxt] = // } // } // } // }; void solve_dir(int N, int M) { vector<vector<pint>> to(N); while (M--) { int u, v, w; cin >> u >> v >> w; u--, v--; to[u].emplace_back(v, w); } lint ret = 1e18; REP(s, N) { ShortestPath<lint> graph(N + 1); REP(i, N) for (auto [j, w] : to[i]) { graph.add_edge(i, j, w); if (j == s) graph.add_edge(i, N, w); } graph.Dijkstra(s); if (graph.dist[N] < 1e18) chmin(ret, graph.dist[N]); } cout << (ret < 1e18 ? ret : -1) << '\n'; } int main() { int T, N, M; cin >> T >> N >> M; lint ret = 1e18; if (T == 1) solve_dir(N, M); else { ShortestCycle01 graph(N); while (M--) { int u, v, w; cin >> u >> v >> w; u--, v--; graph.add_edge(u, v, w); } REP(i, N) { chmin<lint>(ret, graph.Solve(i).first); dbg(ret); dbg(graph.dist); dbg(graph.prev); } cout << (ret < 1e18 ? ret : -1) << '\n'; } }