結果

問題 No.1320 Two Type Min Cost Cycle
ユーザー stoqstoq
提出日時 2020-12-17 01:03:34
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 213 ms / 2,000 ms
コード長 3,918 bytes
コンパイル時間 2,287 ms
コンパイル使用メモリ 212,036 KB
最終ジャッジ日時 2025-01-17 02:14:22
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 57
権限があれば一括ダウンロードができます

ソースコード

diff #

#define MOD_TYPE 2

#pragma region Macros

#include <bits/stdc++.h>
using namespace std;

#if 0
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#if 1
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;

constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-7;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};

#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";

struct io_init
{
  io_init()
  {
    cin.tie(0);
    ios::sync_with_stdio(false);
    cout << setprecision(30) << setiosflags(ios::fixed);
  };
} io_init;
template <typename T>
inline bool chmin(T &a, T b)
{
  if (a > b)
  {
    a = b;
    return true;
  }
  return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
  if (a < b)
  {
    a = b;
    return true;
  }
  return false;
}
inline ll CEIL(ll a, ll b)
{
  return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
  fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept
{
  is >> p.first >> p.second;
  return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
  os << p.first << " " << p.second;
  return os;
}
#pragma endregion

template <typename T>
struct dijkstra
{
  int V;
  T INF_d;
  struct edge
  {
    int to;
    T cost;
    int num;
  };
  vector<vector<edge>> E;
  vector<T> d;
  using pt = pair<T, int>;
  dijkstra(int V_) : V(V_)
  {
    E.resize(V);
    d.resize(V);
    if (is_same<int, T>::value)
      INF_d = 2e9;
    else
      INF_d = 8e18;
  }

  void add_E(int a, int b, T c, int num, bool directed)
  {
    E[a].emplace_back(edge{b, c, num});
    if (!directed)
      E[b].emplace_back(edge{a, c, num});
  }

  void calc(int s, int pass)
  {
    priority_queue<pt, vector<pt>, greater<pt>> que;
    fill(d.begin(), d.end(), INF_d);
    que.emplace(T(0), s);
    d[s] = 0;
    while (!que.empty())
    {
      pt p = que.top();
      que.pop();
      int v = p.second;
      if (d[v] < p.first)
        continue;
      for (auto &&e : E[v])
      {
        if (e.num == pass)
          continue;
        if (d[e.to] > d[v] + e.cost)
        {
          d[e.to] = d[v] + e.cost;
          que.emplace(d[e.to], e.to);
        }
      }
    }
  }
};

void solve()
{
  int t, n, m;
  cin >> t >> n >> m;
  dijkstra<ll> ds(n);
  vector<int> u(m), v(m);
  vector<ll> w(m);
  rep(i, m)
  {
    cin >> u[i] >> v[i] >> w[i];
    u[i]--, v[i]--;
    ds.add_E(u[i], v[i], w[i], i, t);
  }
  ll Min = LINF;
  rep(i, m)
  {
    ds.calc(v[i], i);
    ll d = ds.d[u[i]];
    if (d == ds.INF_d)
      continue;
    chmin(Min, d + w[i]);
  }
  cout << (Min == LINF ? -1 : Min) << "\n";
}

int main()
{
  solve();
}
0