結果

問題 No.1320 Two Type Min Cost Cycle
ユーザー theory_and_metheory_and_me
提出日時 2020-12-17 12:42:11
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 708 ms / 2,000 ms
コード長 3,988 bytes
コンパイル時間 2,799 ms
コンパイル使用メモリ 206,076 KB
最終ジャッジ日時 2025-01-17 02:24:45
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 57
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

#define REP(i,n) for(ll i=0;i<(ll)n;i++)
#define dump(x)  cerr << "Line " << __LINE__ << ": " <<  #x << " = " << (x) << "\n";
#define spa << " " <<
#define fi first
#define se second
#define ALL(a)  (a).begin(),(a).end()
#define ALLR(a)  (a).rbegin(),(a).rend()

using ld = long double;
using ll = long long;
using ull = unsigned long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pdd = pair<ld, ld>;

template<typename T> using V = vector<T>;
template<typename T> using P = pair<T, T>;
template<typename T> vector<T> make_vec(size_t n, T a) { return vector<T>(n, a); }
template<typename... Ts> auto make_vec(size_t n, Ts... ts) { return vector<decltype(make_vec(ts...))>(n, make_vec(ts...)); }
template<class S, class T> ostream& operator << (ostream& os, const pair<S, T> v){os << "(" << v.first << ", " << v.second << ")"; return os;}
template<typename T> ostream& operator<<(ostream &os, const vector<T> &v) { for (auto &e : v) os << e << ' '; return os; }
template<class T> ostream& operator<<(ostream& os, const vector<vector<T>> &v){ for(auto &e : v){os << e << "\n";} return os;}
struct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;

template <class T> void UNIQUE(vector<T> &x) {sort(ALL(x));x.erase(unique(ALL(x)), x.end());}
template<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; }
void fail() { cout << -1 << '\n'; exit(0); }
inline int popcount(const int x) { return __builtin_popcount(x); }
inline int popcount(const ll x) { return __builtin_popcountll(x); }
template<typename T> void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++)
{cerr<<v[i][0];for(ll j=1;j<w;j++)cerr spa v[i][j];cerr<<"\n";}};
template<typename T> void debug(vector<T>&v,ll n){if(n!=0)cerr<<v[0];
for(ll i=1;i<n;i++)cerr spa v[i];
cerr<<"\n";};

const ll INF = (1ll<<62);
// const ld EPS   = 1e-10;
// const ld PI    = acos(-1.0);
const ll mod = (int)1e9 + 7;
//const ll mod = 998244353;

template< typename T >
struct edge {
  int src, to;
  T cost;

  edge(int to, T cost) : src(-1), to(to), cost(cost) {}

  edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}

  edge &operator=(const int &x) {
    to = x;
    return *this;
  }

  operator int() const { return to; }
};

template< typename T >
using Edges = vector< edge< T > >;
template< typename T >
using WeightedGraph = vector< Edges< T > >;
using UnWeightedGraph = vector< vector< int > >;
template< typename T >
using Matrix = vector< vector< T > >;

template< typename T >
vector< T > Dijkstra(WeightedGraph< T > &g, int s) {
  // const auto INF = numeric_limits< T >::max();
  vector< T > dist(g.size(), INF);

  using Pi = pair< T, int >;
  priority_queue< Pi, vector< Pi >, greater< Pi > > que;
  dist[s] = 0;
  que.emplace(dist[s], s);
  while(!que.empty()) {
    T cost;
    int idx;
    tie(cost, idx) = que.top();
    que.pop();
    if(dist[idx] < cost) continue;
    for(auto &e : g[idx]) {
      auto next_cost = cost + e.cost;
      if(dist[e.to] <= next_cost) continue;
      dist[e.to] = next_cost;
      que.emplace(dist[e.to], e.to);
    }
  }
  return dist;
}

int main(){

    ll T, N, M;
    cin >> T >> N >> M;
    V<ll> u(M), v(M), w(M);
    REP(i, M){
        cin >> u[i] >> v[i] >> w[i];     
        u[i]--, v[i]--;
    }

    ll res = INF;

    auto min_cycle_without_e = [&](ll T, ll idx){
        WeightedGraph<ll> G(N);
        REP(i, M){
            if(i != idx){
                G[u[i]].emplace_back(v[i], w[i]);
                if(!T){
                    G[v[i]].emplace_back(u[i], w[i]);
                }
            }
        }
        auto dist = Dijkstra(G, v[idx]);
        chmin(res, dist[u[idx]] + w[idx]);
    }; 

    REP(i, M) min_cycle_without_e(T, i);

    cout << (res == INF ? -1 : res) << endl;

    return 0;
}
0